[go: up one dir, main page]

Skip to main content

Using Ontology and Cluster Ensembles for Geospatial Clustering Analysis

  • Conference paper
  • First Online:
Intelligent Computing Methodologies (ICIC 2017)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10363))

Included in the following conference series:

  • 2404 Accesses

Abstract

Geospatial clustering is an important topic in spatial analysis and knowledge discovery research. However, most existing clustering methods clusters geospatial data at data level without considering domain knowledge and users’ goals during the clustering process. In this paper, we propose an ontology-based geospatial cluster ensemble approach to produce better clustering results with the consideration of domain knowledge and users’ goals. The approach includes two components: an ontology-based expert system and a cluster ensemble method. The ontology-based expert system is to represent geospatial and clustering domain knowledge and to identify the appropriate clustering components (e.g., geospatial datasets, attributes of the datasets and clustering methods) based on a specific application requirement. The cluster ensemble is to combine a diverse set of clustering results which is produced by recommended clustering components into an optimal clustering result. A real case study has been conducted to demonstrate the efficiency and practicality of the approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Mutual information is a symmetric measure to quality the statistical information shared between two distributions.

  2. 2.

    The number of current cancer care facilities in Alberta is 26.

References

  1. Ng, R., Han, J.: Efficient and effective clustering method for spatial data mining. In: Proceedings of 20th International Conference on Very Large Data Bases (1994)

    Google Scholar 

  2. Shekhar, S., Chawla, S.: Spatial Databases: A Tour. Prentice Hall, Upper Saddle River (2003)

    Google Scholar 

  3. Graco, W., Semenova, T., Dubossarsky, E.: Toward knowledge-driven data mining. In: International Workshop on Domain Driven Data Mining at 13th ACM SIGKDD (2007)

    Google Scholar 

  4. Tung, A.K.H., Han, J., Lakshmanan, L.V.S., Ng, R.T.: Constraint-based clustering in large databases. In: Proceedings of International Conference on Database Theory (2001)

    Google Scholar 

  5. Wang, X., Hamilton, H.J.: Towards an ontology-based spatial clustering framework. In: Proceedings of 18th Canadian Artificial Intelligence Conference (2005)

    Google Scholar 

  6. Mitropoulos, P., Mitropoulos, I., Giannikos, I., Sissouras, A.: A biobjective model for the locational planning of hospitals and health centers. Health Care Manag. Sci. 9, 171–179 (2006)

    Article  Google Scholar 

  7. Liao, K., Guo, D.: A clustering-based approach to the capacitated facility location problem. Trans. GIS 12, 323–339 (2008)

    Article  Google Scholar 

  8. Han, J., Lakshmanan, L.V.S., Ng, R.T.: Constraint-based multidimensional data mining. Computer 32, 46–50 (1999)

    Google Scholar 

  9. Wang, X., Rostoker, C., Hamilton, H.J.: Density-based spatial clustering in the presence of obstacles and facilitators. In: Proceedings of 8th European Conference on Principles and Practice of Knowledge Discovery in Databases (2004)

    Google Scholar 

  10. Alberta Breast Cancer Screening Program website. http://www.cancerboard.ab.ca/abcsp/program.html

  11. Breaux, T.D., Reed, J.W.: Using ontology in hierarchical information clustering. In Proceedings of 38th Annual Hawaii International Conference on System Sciences (2005)

    Google Scholar 

  12. Han, J., Kamber, M.: Data Mining: Concepts and Techniques, 2nd edn. Morgan Kaufmann, Burlington (2006)

    MATH  Google Scholar 

  13. Strehl, A., Ghosh, J.: Cluster ensembles – a knowledge reuse framework for combining multiple partitions. Mach. Learn. Res. 3, 583–617 (2002)

    MathSciNet  MATH  Google Scholar 

  14. Fern, X.Z., Lin, W.: Cluster ensemble selection. J. Stat. Anal. Data Min. 1, 128–141 (2008)

    Article  MathSciNet  Google Scholar 

  15. Gruber, T.R.: A translation approach to portable ontologies. Knowl. Acquis. 5, 199–220 (1993)

    Article  Google Scholar 

  16. Data quality index for census geographies. http://www12.statcan.ca.ezproxy.lib.ucalgary.ca/census-recensement/2006/ref/notes/DQ-QD_geo-eng.cfm

  17. Ng, M.K.: A note on constrained k-means algorithms. Pattern Recogn. 33, 515–519 (2000)

    Article  Google Scholar 

  18. Fonseca, F., Egenhofer, M., Agouris, P., Câmara, G.: Using ontologies for integrated geographic information systems. Trans. GIS 6, 231–257 (2002)

    Article  Google Scholar 

  19. Maedche, A., Zacharias, V.: Clustering ontology-based metadata in the semantic web. In: Proceedings of 6th European Conference on Principles of Data Mining and Knowledge Discovery (2002)

    Google Scholar 

  20. Worboys, M.F.: Metrics and topologies for geographic space. In: Advances in Geographic Information Systems Research II: International Symposium on Spatial Data Handling (1996)

    Google Scholar 

  21. Egenhofer, M.J., Clementini, E., di Felice, P.: Topological relations between regions with holes. Int. J. Geogr. Inf. Sci. 8, 129–142 (1994)

    Article  Google Scholar 

  22. Papadias, D., Egenhofer, M.: Hierarchical spatial reasoning about direction relations. GeoInformatica 1, 251–273 (1997)

    Article  Google Scholar 

  23. Egenhofer, M.J., Franzosa, R.D.: Point-set topological spatial relations. Int. J. Geogr. Inf. Sci. 5, 161–174 (1991)

    Article  Google Scholar 

  24. Protégé web site. http://protege.stanford.edu/index.html

  25. Wang, X., Gu, W., Ziébelin, D., Hamilton, H.: An ontology-based framework for geospatial clustering. Int. J. Geogr. Inf. Sci. 24(11), 1601–1630 (2010)

    Article  Google Scholar 

  26. Crubézy, M., Musen, M.: Ontologies in support of problem solving. In: Staab, S., Studer, R. (eds.) Handbook on Ontologies. International Handbooks on Information Systems, pp. 321–341. Springer, Heidelberg (2004). doi:10.1007/978-3-540-24750-0_16

    Chapter  Google Scholar 

  27. Parmentier, T., Ziebelin, D.: Distributed problem solving environment dedicated to DNA sequence annotation. In: Proceedings of 11th European Workshop on Knowledge Acquisition, Modeling and Management (1999)

    Google Scholar 

  28. Teitz, M.B., Bart, P.: Heuristic methods for estimating the generalized vertex median of a weighted graph. Oper. Res. 16, 955–961 (1968)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xin Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Wang, X., Gu, W. (2017). Using Ontology and Cluster Ensembles for Geospatial Clustering Analysis. In: Huang, DS., Hussain, A., Han, K., Gromiha, M. (eds) Intelligent Computing Methodologies. ICIC 2017. Lecture Notes in Computer Science(), vol 10363. Springer, Cham. https://doi.org/10.1007/978-3-319-63315-2_35

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-63315-2_35

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-63314-5

  • Online ISBN: 978-3-319-63315-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics