[go: up one dir, main page]

Skip to main content

Evolutionary Inspired Adaptation of Exercise Plans for Increasing Solution Variety

  • Conference paper
  • First Online:
Case-Based Reasoning Research and Development (ICCBR 2017)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10339))

Included in the following conference series:

Abstract

An initial case base population naturally lacks diversity of solutions. In order to overcome this cold-start problem, we present how genetic algorithms (GA) can be applied. The work presented in this paper is part of the selfBACK EU project and describes a case-based recommendation system that creates exercise plans for patients with non-specific low back pain (LBP). In selfBACK Case-Based Reasoning (CBR) is used as its main methodology for generating patient-specific advice for managing non-specific LBP. The sub-module of selfBACK presented in this work focuses on the adaptation process of exercise plans: A GA inspired method is created to increase the variation of personalized exercise plans, which today are crafted by medical professionals. Experiments are conducted using real patients’ characteristics with expert-crafted solutions and automatically generated solutions. In the evaluation we compare the quality of the GA-generated solutions to null-adaptation solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://github.com/kerstinbach/mycbr-rest-example.

References

  1. Aamodt, A., Plaza, E.: Case-based reasoning: foundational issues, methodological variations, and system approaches. Artif. Intell. Commun. 7(1), 39–59 (1994)

    Google Scholar 

  2. Bach, K., Szczepanski, T., Aamodt, A., Gundersen, O.E., Mork, P.J.: Case representation and similarity assessment in the selfBACK decision support system. ICCBR 2116 (accepted for publication)

    Google Scholar 

  3. Bareiss, R.: Exemplar-based knowledge acquisition (1989)

    Google Scholar 

  4. Begum, S., Ahmed, M.U., Xiong, N., Folke, M.: Case based reasoning systems in the health sciences a survey of recent trends and developments. IEEE Trans. Syst. Man Cybern. Part C (Appl. Rev.) 41, 421–434 (2010)

    Article  Google Scholar 

  5. Bichindaritz, I.: Case-based reasoning in the health sciences: why it matters for the health sciences and for CBR. In: Althoff, K.D., Bergmann, R., Minor, M., Hanft, A. (eds.) Advances in Case-Based Reasoning. LNCS, vol. 5239, pp. 1–17. Springer, Heidelberg (2008). doi:10.1007/978-3-540-85502-6_1

    Chapter  Google Scholar 

  6. Brox, J.: Ryggsmerter. In: Aktivitetshåndboken - Fysisk aktivitet i forebygging og behandling, pp. 537–547. Helsedirektoratet (2009)

    Google Scholar 

  7. da Costa, LCM., Maher, C.G., McAuley, J.H., Hancock, M.J., Herbert, R.D., Refshauge, K.M., Henschke, N.: Prognosis for patients with chronic low back pain: inception cohort study (2009)

    Google Scholar 

  8. Chang, C., Cui, J., Wang, D., Hu, K.: Research on case adaptation techniques in case-based reasoning. In: Proceedings of 2004 International Conference on Machine Learning and Cybernetics. IEEE (2004)

    Google Scholar 

  9. Choudhury, N.: A survey on case-based reasoning in medicine. Int. J. Adv. Comput. Sci. Appl. 7(8), 136–144 (2016)

    Google Scholar 

  10. Deyo, R.A., Battie, M., Beurskens, A., Bombardier, C., Croft, P., Koes, B., Malmivaara, A., Roland, M., Von Korff, M., Waddell, G.: Outcome measures for low back pain research. A proposal for standardized use 23(18), 2003–2013 (1998)

    Google Scholar 

  11. de A, G., Maher, M.L.: An evolutionary approach to case adaptation. In: Althoff, K.-D., Bergmann, R., Branting, L.K. (eds.) ICCBR 1999. LNCS, vol. 1650, pp. 162–173. Springer, Heidelberg (1999). doi:10.1007/3-540-48508-2_12

    Chapter  Google Scholar 

  12. Grech, A., Main, J.: Case-base injection schemes to case adaptation using genetic algorithms. In: Funk, P., González Calero, P.A. (eds.) ECCBR 2004. LNCS (LNAI), vol. 3155, pp. 198–210. Springer, Heidelberg (2004). doi:10.1007/978-3-540-28631-8_16

    Chapter  Google Scholar 

  13. Husain, W., Wei, L.J., Cheng, S.L., Zakaria, N.: Application of data mining techniques in a personalized diet recommendation system for cancer patients. In: IEEE Colloquium on Humanities, Science and Engineering. IEEE Xplore (2011)

    Google Scholar 

  14. Ben Schafer, J., Dan Frankowski, J.: Collaborative filtering recommender systems (2007)

    Google Scholar 

  15. Fritz, J.M., George, S.Z., Delitto, A.: The role of fear-avoidance beliefs in acute low back pain: relationships with current and future disability and work status. Pain 94(1), 7–15 (2001)

    Article  Google Scholar 

  16. Kofod-Petersen, A., Cassens, J., Aamodt, A.: Explanatory capabilities in the creek knowledge-intensive case-based reasoner. In: Proceedings of the 2008 Conference on Tenth Scandinavian Conference on Artificial Intelligence: SCAI 2008, pp. 28–35. IOS Press, Amsterdam, The Netherlands (2008)

    Google Scholar 

  17. Koton, P.: Reasoning about evidence in causal explanations. In: Proceedings of the Seventh AAAI National Conference on Artificial Intelligence, AAAI 1988, Saint Paul, Minnesota, pp. 256–261. AAAI Press (1988). http://dl.acm.org/citation.cfm?id=2887965.2888011

  18. Lærum, E., Brox, J.I., Storheim, K., Espeland, A., Haldorsen, E., Munch-Ellingsen, J., Nielsen, L., Rossvoll, I., Skouen, J.S., Stig, L., Werner, E.L.: Nasjonale kliniske retningslinjene for korsryggsmerter. Formi (2007)

    Google Scholar 

  19. Marling, C., Rissland, E., Aamodt, A.: Integrations with case-based reasoning. Knowl. Eng. Rev. 20(3), 241–245 (2005)

    Article  Google Scholar 

  20. Nikpour, H., Aamodt, A., Skalle, P.: Diagnosing root causes and generating graphical explanations by integrating temporal causal reasoning and CBR. In: Coman, A., Kapetanakis, S. (eds.) Workshops Proceedings for the Twenty-Fourth International Conferenceon Case-Based Reasoning (ICCBR 2016), Atlanta, Georgia, USA, 31 October–2 November 2016. CEUR Workshop Proceedings, vol. 1815, pp. 162–172. CEUR-WS.org (2016)

    Google Scholar 

  21. Petrovic, S., Khussainova, G., Jagannathan, R.: Knowledge-light adaptation approaches in case-based reasoning for radiotherapy treatment planning. Artif. Intell. Med. 68, 17–28 (2016). ScienceDirect

    Article  Google Scholar 

  22. Schmidt, R., Montani, S., Bellazzi, R., Portinale, L., Gierl, L.: Cased-based reasoning for medical knowledge-based systems. Int. J. Med. Inf. 64, 355–367 (2001). ScienceDirect

    Article  Google Scholar 

  23. Senanayke, S., Malik, O.A., Iskandar, P.M., Zaheer, D.: A hybrid intelligent system for recovery and performance evaluation after anterior cruciate ligament injury. In: 2012 12th International Conference on Intelligent Systems Design and Applications (ISDA). IEEE (2012)

    Google Scholar 

  24. Spears, V.M., Jong, K.A.D.: On the virtues of parameterized uniform crossover. In: Proceedings of the Fourth International Conference on Genetic Algorithms, pp. 230–236 (1991)

    Google Scholar 

Download references

Acknowledgement

The work has been conducted as part of the selfBACK project, which has received funding from the European Union’s Horizon 2020 research and innovation programmer under grant agreement No. 689043.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kerstin Bach .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Prestmo, T., Bach, K., Aamodt, A., Mork, P.J. (2017). Evolutionary Inspired Adaptation of Exercise Plans for Increasing Solution Variety. In: Aha, D., Lieber, J. (eds) Case-Based Reasoning Research and Development. ICCBR 2017. Lecture Notes in Computer Science(), vol 10339. Springer, Cham. https://doi.org/10.1007/978-3-319-61030-6_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-61030-6_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-61029-0

  • Online ISBN: 978-3-319-61030-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics