[go: up one dir, main page]

Skip to main content

Parameterized Counting of Trees, Forests and Matroid Bases

  • Conference paper
  • First Online:
Computer Science – Theory and Applications (CSR 2017)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10304))

Included in the following conference series:

Abstract

We prove \(\mathsf {\#W[1]}\)-hardness of counting (1) trees with k edges in a given graph, (2) forests with k edges in a given graph, and (3) bases of a given matroid of rank (or nullity) k representable over an arbitrary field of characteristic two, where k is the parameter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    That is, \(\sup \{\tau (H) \mid H \in {\mathcal {H}}\} < \infty \), where \(\tau (H)\) is the size of a minimum vertex cover of H.

  2. 2.

    A slightly weaker version of this result with a simpler proof that still suffices for our application seems to follow along the lines of Snook [14].

  3. 3.

    This terminology stems from the fact that the removal of a leaves v isolated.

References

  1. Brand, C., Dell, H., Roth, M.: Fine-grained dichotomies for the tutte plane and boolean #CSP. In: 11th International Symposium on Parameterized and Exact Computation (IPEC 2016), 24–26 August 2016, Aarhus, Denmark, pp. 9:1–9:14 (2016)

    Google Scholar 

  2. Brand, C., Roth, M.: Parameterized counting of trees, forests and matroid bases. CoRR, abs/1611.01823 (2016)

    Google Scholar 

  3. Curticapean, R.: Counting matchings of size k Is \(\sharp \) W[1]-Hard. In: Fomin, F.V., Freivalds, R., Kwiatkowska, M., Peleg, D. (eds.) ICALP 2013. LNCS, vol. 7965, pp. 352–363. Springer, Heidelberg (2013). doi:10.1007/978-3-642-39206-1_30

    Chapter  Google Scholar 

  4. Curticapean, R., Marx, D.: Complexity of counting subgraphs: only the boundedness of the vertex-cover number counts. In: 55th IEEE Annual Symposium on Foundations of Computer Science (FOCS 2014), Philadelphia, PA, USA, 18–21 October 2014, pp. 130–139 (2014)

    Google Scholar 

  5. Cygan, M., Fomin, F.V., Kowalik, L., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, Heidelberg (2015)

    Book  MATH  Google Scholar 

  6. Eppstein, D.: Subgraph isomorphism in planar graphs and related problems. In: Graph Algorithms and Applications, p. 283 (2002)

    Google Scholar 

  7. Flum, J., Grohe, M.: Parameterized Complexity Theory. Texts in Theoretical Computer Science. An EATCS Series. Springer, Heidelberg (2006)

    MATH  Google Scholar 

  8. Gebauer, H., Okamoto, Y.: Fast exponential-time algorithms for the forest counting and the Tutte polynomial computation in graph classes. Int. J. Found. Comput. Sci. 20(1), 25–44 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  9. Jerrum, M.: Counting trees in a graph is #P-complete. Inf. Process. Lett. 51(3), 111–116 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  10. Lokshtanov, D., Misra, P., Panolan, F., Saurabh, S.: Deterministic truncation of linear matroids. In: Halldórsson, M.M., Iwama, K., Kobayashi, N., Speckmann, B. (eds.) ICALP 2015. LNCS, vol. 9134, pp. 922–934. Springer, Heidelberg (2015). doi:10.1007/978-3-662-47672-7_75

    Chapter  Google Scholar 

  11. Marx, D.: A parameterized view on matroid optimization problems. Theor. Comput. Sci. 410(44), 4471–4479 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  12. Maurer, S.B.: Matrix generalizations of some theorems on trees, cycles and cocycles in graphs. SIAM J. Appl. Math. 30(1), 143–148 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  13. Oxley, J.G.: Matroid Theory. Oxford University Press, New York (1992)

    MATH  Google Scholar 

  14. Snook, M.: Counting bases of representable matroids. Electr. J. Comb. 19(4), P41 (2012)

    MathSciNet  MATH  Google Scholar 

  15. Vertigan, D.: Bicycle dimension and special points of the Tutte polynomial. J. Comb. Theory Ser. B 74(2), 378–396 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  16. Vertigan, D., Welsh, D.J.A.: The compunational complexity of the Tutte plane. Comb. Probability Comput. 1, 181–187 (1992)

    Article  MATH  Google Scholar 

Download references

Acknowledgements

The authors wish to thank Markus Bläser, Radu Curticapean, Holger Dell and Petr Hliněný for helpful comments on this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cornelius Brand .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Brand, C., Roth, M. (2017). Parameterized Counting of Trees, Forests and Matroid Bases. In: Weil, P. (eds) Computer Science – Theory and Applications. CSR 2017. Lecture Notes in Computer Science(), vol 10304. Springer, Cham. https://doi.org/10.1007/978-3-319-58747-9_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-58747-9_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-58746-2

  • Online ISBN: 978-3-319-58747-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics