Abstract
Image segmentation is an initial, yet crucial procedure in a number of medical imaging systems. Despite the existence of numerous generic solutions that address this problem, there is still a need for developing fast and accurate techniques specialized at extracting particular organs from the CT scans. In this paper, we present an approach based on simple operations, which is controlled with a few easy-to-adjust parameters and works without any user interaction. The proposed approach, despite its simplicity, was shown to be reliable and efficient for a dataset of over 50 studies, containing both healthy and pathologic lungs.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Annangi, P., Thiruvenkadam, S., et al.: A region based active contour method for X-Ray lung segmentation using prior shape and low level features. In: Biomedical Imaging From Nano to Macro. IEEE (2010)
Costa, A., Carvalho, B.: SALSA–A simple automatic lung segmentation algorithm. In: Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications, pp. 501–508 (2015)
Cyganek, B., Graña, M., Porwik, P., Wozniak, M.: Intelligent methods applied to health-care information systems. Appl. Artif. Intell. 30(6), 495–496 (2016)
Felzenszwalb, P., Huttenlocher, D.: Distance transforms of sampled functions. Theory Comput. 8, 415–428 (2012)
van Ginneken, B., et al.: Off-the-shelf convolutional neural network features for pulmonary nodule detection in computed tomography scans. In: Proceedings of IEEE ISBI, pp. 286–289 (2015)
Hu, S., Hoffmann, E.: Automatic lung segmentation for accurate quantitation of volumetric X-Ray CT images. IEEE Trans. Med. Imaging 20(6), 490–498 (2001)
Kawulok, M., Kawulok, J., Nalepa, J., Smolka, B.: Self-adaptive algorithm for segmenting skin regions. EURASIP J. Adv. Sig. Proc. 2014, 170 (2014)
Mansoor, A., et al.: A generic approach to pathological lung segmentation. IEEE Trans. Med. Imaging 33(12), 2293–2310 (2014)
Mostafa, A., Elfattah, M.A., Fouad, A., Hassanien, A.E., Hefny, H.: Enhanced region growing segmentation for CT liver images. Adv. Intell. Syst. Comput. 407, 115–127 (2015)
Nalepa, J., Kawulok, M.: Fast and accurate hand shape classification. In: Kozielski, S., Mrozek, D., Kasprowski, P., Małysiak-Mrozek, B., Kostrzewa, D. (eds.) BDAS 2014. CCIS, vol. 424, pp. 364–373. Springer, Cham (2014). doi:10.1007/978-3-319-06932-6_35
Otsu, N.: A threshold selection method from gray level histograms. IEEE Trans. Syst. Man Cybern. SMC–9(1), 62–66 (1979)
Perez, M.G., et al.: A multi-level thresholding method based on histogram derivatives for accurate brain MRI segmentation. Rev. Politcnica 35, 82 (2015)
Schlegl, T., Ofner, J., Langs, G.: Unsupervised pre-training across image domains improves lung tissue classification. In: Menze, B., Langs, G., Montillo, A., Kelm, M., Müller, H., Zhang, S., Cai, W.T., Metaxas, D. (eds.) MCV 2014. LNCS, vol. 8848, pp. 82–93. Springer, Cham (2014). doi:10.1007/978-3-319-13972-2_8
Shen, W., Zhou, M., Yang, F., Yang, C., Tian, J.: Multi-scale convolutional neural networks for lung nodule classification. In: Ourselin, S., Alexander, D.C., Westin, C.-F., Cardoso, M.J. (eds.) IPMI 2015. LNCS, vol. 9123, pp. 588–599. Springer, Cham (2015). doi:10.1007/978-3-319-19992-4_46
Shin, H.C., Roth, H., et al.: Deep convolutional neural networks for computer-aided detection: CNN architectures, dataset characteristics and transfer learning. IEEE Trans. Med. Imaging 35, 1285–1298 (2016)
Siminski, K.: Clustering with missing values. Fundam. Inform. 123(3), 331–350 (2013)
Starosolski, R.: New simple and efficient color space transformations for lossless image compression. J. Vis. Commun. Image Represent. 25(5), 1056–1063 (2014)
Sternberg, S.: Biomedical image processing. IEEE Comput. 16(1), 22–34 (1983)
Wang, J., Chan, K.L.: Active contour with a tangential component. J. Math. Imaging Vis. 51(2), 229–247 (2014)
Wang, Q., et al.: HOSVD-based 3D active appearance model: segmentation of lung fields in CT images. J. Med. Syst. 40(176), 1–11 (2016)
Zghidi, H., Walczak, M., et al.: Image processing and analysis of textile fibers by virtual random walk. In: Proceedings of the 2015 Federated Conference on Computer Science and Information Systems, vol. 5, pp. 717–720 (2013)
Zhang, T.Y., Suen, C.Y.: A fast parallel algorithm for thinning digital patterns. Commun. ACM 27(3), 236–239 (1984)
Acknowledgments
This research was supported by the National Centre for Research and Development under the Innomed Research and Development Grant No. POIR.01.02.00-00-0030/15.
Author information
Authors and Affiliations
Corresponding authors
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Walczak, M., Burda, I., Nalepa, J., Kawulok, M. (2017). Segmenting Lungs from Whole-Body CT Scans. In: Kozielski, S., Mrozek, D., Kasprowski, P., Małysiak-Mrozek, B., Kostrzewa, D. (eds) Beyond Databases, Architectures and Structures. Towards Efficient Solutions for Data Analysis and Knowledge Representation. BDAS 2017. Communications in Computer and Information Science, vol 716. Springer, Cham. https://doi.org/10.1007/978-3-319-58274-0_32
Download citation
DOI: https://doi.org/10.1007/978-3-319-58274-0_32
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-58273-3
Online ISBN: 978-3-319-58274-0
eBook Packages: Computer ScienceComputer Science (R0)