[go: up one dir, main page]

Skip to main content

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 716))

Abstract

Image segmentation is an initial, yet crucial procedure in a number of medical imaging systems. Despite the existence of numerous generic solutions that address this problem, there is still a need for developing fast and accurate techniques specialized at extracting particular organs from the CT scans. In this paper, we present an approach based on simple operations, which is controlled with a few easy-to-adjust parameters and works without any user interaction. The proposed approach, despite its simplicity, was shown to be reliable and efficient for a dataset of over 50 studies, containing both healthy and pathologic lungs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Annangi, P., Thiruvenkadam, S., et al.: A region based active contour method for X-Ray lung segmentation using prior shape and low level features. In: Biomedical Imaging From Nano to Macro. IEEE (2010)

    Google Scholar 

  2. Costa, A., Carvalho, B.: SALSA–A simple automatic lung segmentation algorithm. In: Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications, pp. 501–508 (2015)

    Google Scholar 

  3. Cyganek, B., Graña, M., Porwik, P., Wozniak, M.: Intelligent methods applied to health-care information systems. Appl. Artif. Intell. 30(6), 495–496 (2016)

    Article  Google Scholar 

  4. Felzenszwalb, P., Huttenlocher, D.: Distance transforms of sampled functions. Theory Comput. 8, 415–428 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  5. van Ginneken, B., et al.: Off-the-shelf convolutional neural network features for pulmonary nodule detection in computed tomography scans. In: Proceedings of IEEE ISBI, pp. 286–289 (2015)

    Google Scholar 

  6. Hu, S., Hoffmann, E.: Automatic lung segmentation for accurate quantitation of volumetric X-Ray CT images. IEEE Trans. Med. Imaging 20(6), 490–498 (2001)

    Article  Google Scholar 

  7. Kawulok, M., Kawulok, J., Nalepa, J., Smolka, B.: Self-adaptive algorithm for segmenting skin regions. EURASIP J. Adv. Sig. Proc. 2014, 170 (2014)

    Article  Google Scholar 

  8. Mansoor, A., et al.: A generic approach to pathological lung segmentation. IEEE Trans. Med. Imaging 33(12), 2293–2310 (2014)

    Article  Google Scholar 

  9. Mostafa, A., Elfattah, M.A., Fouad, A., Hassanien, A.E., Hefny, H.: Enhanced region growing segmentation for CT liver images. Adv. Intell. Syst. Comput. 407, 115–127 (2015)

    Article  Google Scholar 

  10. Nalepa, J., Kawulok, M.: Fast and accurate hand shape classification. In: Kozielski, S., Mrozek, D., Kasprowski, P., Małysiak-Mrozek, B., Kostrzewa, D. (eds.) BDAS 2014. CCIS, vol. 424, pp. 364–373. Springer, Cham (2014). doi:10.1007/978-3-319-06932-6_35

    Chapter  Google Scholar 

  11. Otsu, N.: A threshold selection method from gray level histograms. IEEE Trans. Syst. Man Cybern. SMC–9(1), 62–66 (1979)

    Article  MathSciNet  Google Scholar 

  12. Perez, M.G., et al.: A multi-level thresholding method based on histogram derivatives for accurate brain MRI segmentation. Rev. Politcnica 35, 82 (2015)

    Google Scholar 

  13. Schlegl, T., Ofner, J., Langs, G.: Unsupervised pre-training across image domains improves lung tissue classification. In: Menze, B., Langs, G., Montillo, A., Kelm, M., Müller, H., Zhang, S., Cai, W.T., Metaxas, D. (eds.) MCV 2014. LNCS, vol. 8848, pp. 82–93. Springer, Cham (2014). doi:10.1007/978-3-319-13972-2_8

    Google Scholar 

  14. Shen, W., Zhou, M., Yang, F., Yang, C., Tian, J.: Multi-scale convolutional neural networks for lung nodule classification. In: Ourselin, S., Alexander, D.C., Westin, C.-F., Cardoso, M.J. (eds.) IPMI 2015. LNCS, vol. 9123, pp. 588–599. Springer, Cham (2015). doi:10.1007/978-3-319-19992-4_46

    Chapter  Google Scholar 

  15. Shin, H.C., Roth, H., et al.: Deep convolutional neural networks for computer-aided detection: CNN architectures, dataset characteristics and transfer learning. IEEE Trans. Med. Imaging 35, 1285–1298 (2016)

    Article  Google Scholar 

  16. Siminski, K.: Clustering with missing values. Fundam. Inform. 123(3), 331–350 (2013)

    MATH  Google Scholar 

  17. Starosolski, R.: New simple and efficient color space transformations for lossless image compression. J. Vis. Commun. Image Represent. 25(5), 1056–1063 (2014)

    Article  Google Scholar 

  18. Sternberg, S.: Biomedical image processing. IEEE Comput. 16(1), 22–34 (1983)

    Article  Google Scholar 

  19. Wang, J., Chan, K.L.: Active contour with a tangential component. J. Math. Imaging Vis. 51(2), 229–247 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  20. Wang, Q., et al.: HOSVD-based 3D active appearance model: segmentation of lung fields in CT images. J. Med. Syst. 40(176), 1–11 (2016)

    Google Scholar 

  21. Zghidi, H., Walczak, M., et al.: Image processing and analysis of textile fibers by virtual random walk. In: Proceedings of the 2015 Federated Conference on Computer Science and Information Systems, vol. 5, pp. 717–720 (2013)

    Google Scholar 

  22. Zhang, T.Y., Suen, C.Y.: A fast parallel algorithm for thinning digital patterns. Commun. ACM 27(3), 236–239 (1984)

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by the National Centre for Research and Development under the Innomed Research and Development Grant No. POIR.01.02.00-00-0030/15.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Maksym Walczak , Jakub Nalepa or Michal Kawulok .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Walczak, M., Burda, I., Nalepa, J., Kawulok, M. (2017). Segmenting Lungs from Whole-Body CT Scans. In: Kozielski, S., Mrozek, D., Kasprowski, P., Małysiak-Mrozek, B., Kostrzewa, D. (eds) Beyond Databases, Architectures and Structures. Towards Efficient Solutions for Data Analysis and Knowledge Representation. BDAS 2017. Communications in Computer and Information Science, vol 716. Springer, Cham. https://doi.org/10.1007/978-3-319-58274-0_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-58274-0_32

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-58273-3

  • Online ISBN: 978-3-319-58274-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics