[go: up one dir, main page]

Skip to main content

Cost-Complexity Pruning of Random Forests

  • Conference paper
  • First Online:
Mathematical Morphology and Its Applications to Signal and Image Processing (ISMM 2017)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 10225))

Abstract

Random forests perform boostrap-aggregation by sampling the training samples with replacement. This enables the evaluation of out-of-bag error which serves as a internal cross-validation mechanism. Our motivation lies in the using of the unsampled training samples to improve the ensemble of decision trees. In this paper we study the effect of using the out-of-bag samples to improve the generalization error first of the decision trees and second the random forest by post-pruning. A preliminary empirical study on four UCI repository datasets show consistent decrease in the size of the forests without considerable loss in accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Biau, G., Devroye, L., Lugosi, G.: Consistency of random forests and other averaging classifiers. J. Mach. Learn. Res. 9, 2015–2033 (2008)

    MathSciNet  MATH  Google Scholar 

  2. Breiman, L., Friedman, J., Olshen, R.A., Stone, C.J.: Classification and Regression Trees. Chapman and Hall, New York (1984)

    MATH  Google Scholar 

  3. Breiman, L.: Bagging predictors. Mach. Learn. 24(2), 123–140 (1996)

    MATH  Google Scholar 

  4. Breiman, L.: Out-of-bag estimation. Technical report Statistics Department, University of California Berkeley (1996)

    Google Scholar 

  5. Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)

    Article  MATH  Google Scholar 

  6. Criminisi, A., Shotton, J., Konukoglu, E.: Decision forests: a unified framework for classification, regression, density estimation, manifold learning and semi-supervised learning. Found. Trends. Comput. Graph. Vis. 7, 81–227 (2012)

    Article  MATH  Google Scholar 

  7. Denil, M., Matheson, D., De Freitas, N.: Narrowing the gap: random forests in theory and in practice. In: ICML, pp. 665–673 (2014)

    Google Scholar 

  8. Devroye, L., Gyrfi, L., Lugosi, G.: A Probabilistic Theory of Pattern Recognition. Applications of Mathematics. Springer, New York (1996)

    Book  Google Scholar 

  9. Geurts, P., Ernst, D., Wehenkel, L.: Extremely randomized trees. Mach. Learn. 63(1), 3–42 (2006)

    Article  MATH  Google Scholar 

  10. Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning: Data Mining, Inference and Prediction, 2nd edn. Springer, Berlin (2009)

    Book  MATH  Google Scholar 

  11. Ho, T.K.: The random subspace method for constructing decision forests. IEEE Trans. Pattern Anal. Mach. Intell. 20(8), 832–844 (1998)

    Article  Google Scholar 

  12. Lichman, M.: UCI machine learning repository (2013). http://archive.ics.uci.edu/ml

  13. Mingers, J.: An empirical comparison of pruning methods for decision tree induction. Mach. Learn. 4(2), 227–243 (1989)

    Article  Google Scholar 

  14. Rakotomalala, R.: Graphes d’induction. Ph.D. thesis, L’Universit Claude Bernard - Lyon I (1997)

    Google Scholar 

  15. Segal, M.R.: Machine learning benchmarks and random forest regression. Center for Bioinformatics and Molecular Biostatistics (2004). http://escholarship.org/uc/item/35x3v9t4

  16. Torgo, L.: Inductive learning of tree-based regression models. Ph.D. thesis, Universidade do Porto (1999)

    Google Scholar 

  17. Weiss, S.M., Indurkhya, N.: Decision tree pruning: biased or optimal? In: AAAI, pp. 626–632 (1994)

    Google Scholar 

  18. Wyner, A.J., Olson, M., Bleich, J., Mease, D.: Explaining the success of adaboost and random forests as interpolating classifiers. arXiv preprint arXiv:1504.07676 (2015)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Ravi Kiran .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Kiran, B.R., Serra, J. (2017). Cost-Complexity Pruning of Random Forests. In: Angulo, J., Velasco-Forero, S., Meyer, F. (eds) Mathematical Morphology and Its Applications to Signal and Image Processing. ISMM 2017. Lecture Notes in Computer Science(), vol 10225. Springer, Cham. https://doi.org/10.1007/978-3-319-57240-6_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-57240-6_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-57239-0

  • Online ISBN: 978-3-319-57240-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics