[go: up one dir, main page]

Skip to main content

Estimation of Intracranial P300 Speller Sites with Magnetoencephalography (MEG)—Perspectives for Non-invasive Navigation of Subdural Grid Implantation

  • Chapter
  • First Online:
Brain-Computer Interface Research

Abstract

Brain-Computer Interfaces (BCIs) are powerful tools for enabling communication between people and the surrounding world by directly utilizing brain activity and avoiding motor pathways. Before moving into invasive implantation of BCIs, a key issue must be resolved—localization of the areas for implantation, which might vary depending on the chosen BCI type as well as on the individual person’s characteristics. In this study, we aimed to evaluate the possibility of non-invasive navigation of subdural electrode implantation for P300 speller BCI by using magnetoencephalogaphy (MEG). The accuracy of subdural P300 speller performance based on the sites identified with MEG was comparable with the performance based on the sites identified from subdural electrode grids—80% and 90% averaged accuracy, respectively. Our study demonstrates the feasibility of using MEG as a non-invasive tool for navigating electrode implantation required for high accuracy invasive P300 speller control.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

eBook
USD 12.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. W. Wang et al., An electrocorticographic brain interface in an individual with tetraplegia. PLoS ONE 8(2), e55344 (2013)

    Article  Google Scholar 

  2. M. Korostenskaja et al., Non-invasive versus invasive brain-computer interfaces. Abstracts from the Fifth International Brain-Computer Interface Meeting 2013 (Asilomar Conference Center, Pacific Grove, CA, USA, 2013)

    Google Scholar 

  3. M. Korostenskaja et al., Improving ECoG-based P300 speller accuracy. Proceedings of the 6th International Brain-Computer Interface Conference 2014, vol. 088, (2014) p. 1–4

    Google Scholar 

  4. E. Pataraia et al., Magnetoencephalography in presurgical epilepsy evaluation. Neurosurg. Rev. 25(3), 141–59; discussion 160-1 (2002)

    Google Scholar 

  5. J.R. Wolpaw, Brain-computer interfaces as new brain output pathways. J. Physiol. 579(Pt 3), 3–9 (2007)

    Google Scholar 

  6. W. Speier, I. Fried, N. Pouratian, Improved P300 speller performance using electrocorticography, spectral features, and natural language processing. Clin. Neurophysiol. 124(7), 1–8 (2013)

    Article  Google Scholar 

  7. S. Silvoni et al., Amyotrophic lateral sclerosis progression and stability of brain-computer interface communication. Amyotroph Lateral Scler Frontotemporal Degener 14(5–6), 3–6 (2013)

    Google Scholar 

  8. Z.R. Lugo et al., A vibrotactile p300-based brain-computer interface for consciousness detection and communication. Clin. EEG Neurosci. 45(1), 14–21 (2014)

    Article  Google Scholar 

  9. J.E. Huggins, P.A. Wren, K.L. Gruis, What would brain-computer interface users want? Opinions and priorities of potential users with amyotrophic lateral sclerosis. Amyotroph Lateral Scler 12(5), 18–24 (2011)

    Article  Google Scholar 

  10. J.L. Collinger et al., Functional priorities, assistive technology, and brain-computer interfaces after spinal cord injury. J. Rehabil. Res. Dev. 50(2), 45–60 (2013)

    Article  Google Scholar 

  11. J. Viventi, J.A. Blanco, Development of high resolution, multiplexed electrode arrays: opportunities and challenges. 2012 IEEE Conference on Proceedings of Engineering in Medicine and Biology Soceity (2012), p. 1394–1396

    Google Scholar 

  12. J. Viventi et al., Flexible, foldable, actively multiplexed, high-density electrode array for mapping brain activity in vivo. Nat. Neurosci. 14(12), 599–605 (2011)

    Article  Google Scholar 

  13. Y. Zhao et al., Implanted miniaturized antenna for brain computer interface applications: analysis and design. PLoS ONE 9(7), e103945 (2014)

    Article  Google Scholar 

  14. B. Rubehn et al., A MEMS-based flexible multichannel ECoG-electrode array. J. Neural Eng. 6(3), 036003 (2009)

    Article  Google Scholar 

  15. C. Henle et al., First long term in vivo study on subdurally implanted micro-ECoG electrodes, manufactured with a novel laser technology. Biomed. Microdevices 13(1), 59–68 (2011)

    Article  MathSciNet  Google Scholar 

  16. H. Toda et al., Simultaneous recording of ECoG and intracortical neuronal activity using a flexible multichannel electrode-mesh in visual cortex. Neuroimage 54(1), 3–12 (2011)

    Article  Google Scholar 

  17. E.C. Leuthardt et al., Microscale recording from human motor cortex: implications for minimally invasive electrocorticographic brain-computer interfaces. Neurosurg. Focus 27(1), E10 (2009)

    Article  Google Scholar 

  18. C.W. Anderson et al., A comparison of EEG systems for use with brain computer interfaces in home environments. Psychophysiology, 2013. 50 (Issue Supplement S1), p. S6

    Google Scholar 

  19. N.E. Crone, A. Sinai, A. Korzeniewska, High-frequency gamma oscillations and human brain mapping with electrocorticography. Prog. Brain Res. 159, 75–95 (2006)

    Google Scholar 

  20. T. Ball et al., Signal quality of simultaneously recorded invasive and non-invasive EEG. Neuroimage 46(3), 8–16 (2009)

    Article  Google Scholar 

  21. N.J. Hill et al., Recording human electrocorticographic (ECoG) signals for neuroscientific research and real-time functional cortical mapping. J. Vis. Exp. 64 (2012)

    Google Scholar 

  22. T. Kim et al., Spatiotemporal compression for efficient storage and transmission of high-resolution electrocorticography data. 2012 IEEE Conference on Proceedings of Engineering in Medicine and Biology Soceity (2012), p. 1012–1015

    Google Scholar 

  23. S. Kellis et al., Classification of spoken words using surface local field potentials. 2010 IEEE Conference on Proceedings of Engineering in Medicine and Biology Soceity (2012), p. 3827–3830

    Google Scholar 

  24. S. Kellis et al., Decoding spoken words using local field potentials recorded from the cortical surface. J. Neural Eng. 7(5), 056007 (2010)

    Article  Google Scholar 

  25. J. Xiang et al., Noninvasive localization of epileptogenic zones with ictal high-frequency neuromagnetic signals. J Neurosurg Pediatr 5(1), 13–22 (2010)

    Article  Google Scholar 

  26. M.S. Hamalainen et al., Magnetoencephalography—theory, instrumentation, and applications to noninvasive studies of the working human brain. Rev. Mod. Phys. 65, 13–97 (1993)

    Article  Google Scholar 

  27. J. Mellinger et al., An MEG-based brain-computer interface (BCI). Neuroimage 36(3), 81–93 (2007)

    Article  MathSciNet  Google Scholar 

  28. L.A. Farwell, E. Donchin, Talking off the top of your head: toward a mental prosthesis utilizing event-related brain potentials. Electroencephalogr. Clin. Neurophysiol. 70(6), 10–23 (1988)

    Article  Google Scholar 

  29. U. Volpe et al., The cortical generators of P3a and P3b: a LORETA study. Brain Res. Bull. 73(4–6), 20–30 (2007)

    Google Scholar 

  30. P. Baudena et al., Intracerebral potentials to rare target and distractor auditory and visual stimuli III. Frontal cortex. Electroencephalogr. Clin. Neurophysiol. 94(4), 51–64 (1995)

    Article  Google Scholar 

  31. E. Halgren et al., Intracerebral potentials to rare target and distractor auditory and visual stimuli. II. Medial, lateral and posterior temporal lobe. Electroencephalogr. Clin. Neurophysiol. 94(4), 29–50 (1995)

    Article  Google Scholar 

  32. E. Halgren et al., Intracerebral potentials to rare target and distractor auditory and visual stimuli. I. Superior temporal plane and parietal lobe. Electroencephalogr. Clin. Neurophysiol. 94(3), 191–220 (1995)

    Article  Google Scholar 

  33. M.E. Smith et al., The intracranial topography of the P3 event-related potential elicited during auditory oddball. Electroencephalogr. Clin. Neurophysiol. 76(3), 35–48 (1990)

    Article  Google Scholar 

  34. C. Mulert et al., The neural basis of the P300 potential. Focus on the time-course of the underlying cortical generators. Eur. Arch. Psychiatry Clin. Neurosci. 254(3), 1–8 (2004)

    Article  Google Scholar 

  35. I. Kiss, R.M. Dashieff, P. Lordeon, A parieto-occipital generator for P300: evidence from human intracranial recordings. Int. J. Neurosci. 49(1–2), 3–9 (1989)

    Google Scholar 

Download references

Acknowledgements

Authors want to express their gratitude to Dr. Brendan Allison for his valuable editorial suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Korostenskaja .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 The Author(s)

About this chapter

Cite this chapter

Korostenskaja, M. et al. (2017). Estimation of Intracranial P300 Speller Sites with Magnetoencephalography (MEG)—Perspectives for Non-invasive Navigation of Subdural Grid Implantation. In: Guger, C., Allison, B., Ushiba, J. (eds) Brain-Computer Interface Research. SpringerBriefs in Electrical and Computer Engineering. Springer, Cham. https://doi.org/10.1007/978-3-319-57132-4_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-57132-4_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-57131-7

  • Online ISBN: 978-3-319-57132-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics