[go: up one dir, main page]

Skip to main content

Generating Descriptions of Entity Relationships

  • Conference paper
  • First Online:
Advances in Information Retrieval (ECIR 2017)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 10193))

Included in the following conference series:

Abstract

Large-scale knowledge graphs (KGs) store relationships between entities that are increasingly being used to improve the user experience in search applications. The structured nature of the data in KGs is typically not suitable to show to an end user and applications that utilize KGs therefore benefit from human-readable textual descriptions of KG relationships. We present a method that automatically generates textual descriptions of entity relationships by combining textual and KG information. Our method creates sentence templates for a particular relationship and then generates a textual description of a relationship instance by selecting the best template and filling it with appropriate entities. Experimental results show that a supervised variation of our method outperforms other variations as it best captures the semantic similarity between a relationship instance and a template, whilst providing more contextual information.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://github.com/nickvosk/ecir2017-gder-dataset/.

  2. 2.

    CVT entities are special entities in Freebase that are used to model attributes of relationships (e.g., date of marriage).

  3. 3.

    We tag the sentences with POS tags and ignore unigram surface forms that are verbs.

  4. 4.

    A manual evaluation of this algorithm on a held-out, random sample of 100 sentences in our dataset revealed an average of 93% precision and 85% recall per sentence.

  5. 5.

    For example, the path \(p_1\) is a subsequence of \(y'_2\).

  6. 6.

    Note that there might be multiple instantiations (e.g., Deadpool is also a science fiction film) and selecting the optimal one depends on the application—we leave this for future work.

  7. 7.

    For this method we use 20% of the training data as validation data. The same test data is used for all methods.

References

  1. Althoff, T., Dong, X.L., Murphy, K., Alai, S., Dang, V., Zhang, W.: Timemachine: timeline generation for knowledge-base entities. In: KDD (2015)

    Google Scholar 

  2. Blanco, R., Cambazoglu, B.B., Mika, P., Torzec, N.: Entity recommendations in web search. In: Alani, H., et al. (eds.) ISWC 2013. LNCS, vol. 8219, pp. 33–48. Springer, Heidelberg (2013). doi:10.1007/978-3-642-41338-4_3

    Chapter  Google Scholar 

  3. Blanco, R., Ottaviano, G., Meij, E.: Fast and space-efficient entity linking for queries. In: WSDM (2015)

    Google Scholar 

  4. Bollacker, K., Evans, C., Paritosh, P., Sturge, T., Taylor, J.: Freebase: a collaboratively created graph database for structuring human knowledge. In: SIGMOD (2008)

    Google Scholar 

  5. Fang, L., Sarma, A.D., Yu, C., Bohannon, P.: Rex: explaining relationships between entity pairs. In: VLDB (2011)

    Google Scholar 

  6. Ganesan, K., Zhai, C., Han, J.: Opinosis: a graph-based approach to abstractive summarization of highly redundant opinions. In: COLING (2010)

    Google Scholar 

  7. Gkatzia, D., Lemon, O., Rieser, V.: Natural language generation enhances human decision-making with uncertain information. In: ACL (2016)

    Google Scholar 

  8. Konstas, I., Lapata, M.: A global model for concept-to-text generation. JAIR 48, 305–346 (2013)

    MATH  Google Scholar 

  9. Lavie, A., Agarwal, A.: METEOR: an automatic metric for MT evaluation with high levels of correlation with human judgments. In: WMT (2007)

    Google Scholar 

  10. Lebret, R., Grangier, D., Auli, M.: Neural text generation from structured data with application to the biography domain. In: EMNLP (2016)

    Google Scholar 

  11. Lin, C.-Y.: Rouge: a package for automatic evaluation of summaries. In: Text Summarization Branches Out: Proceedings of the ACL-04 Workshop (2004)

    Google Scholar 

  12. Lin, T., Pantel, P., Gamon, M., Kannan, A., Fuxman, A.: Active objects: actions for entity-centric search. In: WWW (2012)

    Google Scholar 

  13. Lin, Y., Liu, Z., Sun, M.: Knowledge representation learning with entities, attributes and relations. In: IJCAI (2016)

    Google Scholar 

  14. Meij, E., Weerkamp, W., de Rijke, M.: Adding semantics to microblog posts. In: WSDM 2012 (2012)

    Google Scholar 

  15. Nickel, M., Murphy, K., Tresp, V., Gabrilovich, E.: A review of relational machine learning for knowledge graphs: from multi-relational link prediction to automated knowledge graph construction. Proc. IEEE 104(1), 11–33 (2016)

    Article  Google Scholar 

  16. Papineni, K., Roukos, S., Ward, T., Zhu, W.-J.: BLEU: a method for automatic evaluation of machine translation. In: ACL (2002)

    Google Scholar 

  17. Pighin, D., Cornolti, M., Alfonseca, E., Filippova, K.: Modelling events through memory-based, Open-IE patterns for abstractive summarization. In: ACL (2014)

    Google Scholar 

  18. Reiter, E., Dale, R., Feng, Z.: Building Natural Language Generation Systems. MIT Press, Cambridge (2000)

    Book  Google Scholar 

  19. Saldanha, G., Biran, O., McKeown, K., Gliozzo, A.: An entity-focused approach to generating company descriptions. In: ACL (2016)

    Google Scholar 

  20. Tombros, A., Sanderson, M.: Advantages of query biased summaries in information retrieval. In: SIGIR (1998)

    Google Scholar 

  21. Turpin, A., Tsegay, Y., Hawking, D., Williams, H.E.: Fast generation of result snippets in web search. In: SIGIR (2007)

    Google Scholar 

  22. Voskarides, N., Meij, E., Tsagkias, M., de Rijke, M., Weerkamp, W.: Learning to explain entity relationships in knowledge graphs. In: ACL-IJCNLP (2015)

    Google Scholar 

  23. Wu, Q., Burges, C.J., Svore, K.M., Gao, J.: Ranking, boosting, and model adaptation. Technical report, Microsoft Research (2008)

    Google Scholar 

  24. Yih, W.-T., Chang, M.-W., He, X., Gao, J.: Semantic parsing via staged query graph generation: question answering with knowledge base. In: ACL (2015)

    Google Scholar 

Download references

Acknowledgments

This research was supported by the Netherlands Institute for Sound and Vision and the Netherlands Organisation for Scientific Research (NWO) under project nr. CI-14-25. All content represents the opinion of the authors, which is not necessarily shared or endorsed by their respective employers and/or sponsors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikos Voskarides .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Voskarides, N., Meij, E., de Rijke, M. (2017). Generating Descriptions of Entity Relationships. In: Jose, J., et al. Advances in Information Retrieval. ECIR 2017. Lecture Notes in Computer Science(), vol 10193. Springer, Cham. https://doi.org/10.1007/978-3-319-56608-5_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-56608-5_25

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-56607-8

  • Online ISBN: 978-3-319-56608-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics