Abstract
In computer vision communities such as stereo, optical flow, or visual tracking, commonly accepted and widely used benchmarks have enabled objective comparison and boosted scientific progress.
In the emergent light field community, a comparable benchmark and evaluation methodology is still missing. The performance of newly proposed methods is often demonstrated qualitatively on a handful of images, making quantitative comparison and targeted progress very difficult. To overcome these difficulties, we propose a novel light field benchmark. We provide 24 carefully designed synthetic, densely sampled 4D light fields with highly accurate disparity ground truth. We thoroughly evaluate four state-of-the-art light field algorithms and one multi-view stereo algorithm using existing and novel error measures.
This consolidated state-of-the art may serve as a baseline to stimulate and guide further scientific progress. We publish the benchmark website http://www.lightfield-analysis.net, an evaluation toolkit, and our rendering setup to encourage submissions of both algorithms and further datasets.
K. Honauer and O. Johannsen contributed equally.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Notes
References
Levoy, M.: Light fields and computational imaging. Computer 39, 46–55 (2006)
Tao, M., Hadap, S., Malik, J., Ramamoorthi, R.: Depth from combining defocus and correspondence using light-field cameras. In: Proceedings of the International Conference on Computer Vision (2013)
Wanner, S., Goldluecke, B.: Variational light field analysis for disparity estimation and super-resolution. IEEE Trans. Pattern Anal. Mach. Intell. 36, 606–619 (2014)
Heber, S., Pock, T.: Shape from light field meets robust PCA. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8694, pp. 751–767. Springer, Cham (2014). doi:10.1007/978-3-319-10599-4_48
Jeon, H., Park, J., Choe, G., Park, J., Bok, Y., Tai, Y., Kweon, I.: Accurate depth map estimation from a lenslet light field camera. In: Proceedings of the International Conference on Computer Vision and Pattern Recognition (2015)
Johannsen, O., Sulc, A., Goldluecke, B.: What sparse light field coding reveals about scene structure. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3262–3270 (2016)
Wang, T., Efros, A., Ramamoorthi, R.: Occlusion-aware depth estimation using light-field cameras. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3487–3495 (2015)
Wilburn, B., Joshi, N., Vaish, V., Talvala, E.V., Antunez, E., Barth, A., Adams, A., Horowitz, M., Levoy, M.: High performance imaging using large camera arrays. ACM Trans. Graph. (TOG) 24, 765–776 (2005). ACM. http://lightfield.stanford.edu/
Marwah, K., Wetzstein, G., Bando, Y., Raskar, R.: Compressive light field photography using overcomplete dictionaries and optimized projections. ACM Trans. Graph. (Proc. SIGGRAPH) 32, 1–11 (2013). http://web.media.mit.edu/ gordonw/SyntheticLightFields/index.php
Mousnier, A., Vural, E., Guillemot, C.: Partial light field tomographic reconstruction from a fixed-camera focal stack. arXiv preprint arXiv:1503.01903 (2015). https://www.irisa.fr/temics/demos/lightField/index.html
Kim, C., Zimmer, H., Pritch, Y., Sorkine-Hornung, A., Gross, M.H.: Scene reconstruction from high spatio-angular resolution light fields. ACM Trans. Graph. 32, 73:1–73:12 (2013). https://www.disneyresearch.com/project/lightfields/
Rerabek, M., Ebrahimi, T.: New light field image dataset. In: 8th International Conference on Quality of Multimedia Experience (QoMEX). Number EPFL-CONF-218363 (2016)
Wanner, S., Meister, S., Goldluecke, B.: Datasets and benchmarks for densely sampled 4D light fields. In: Vision, Modelling and Visualization (VMV) (2013)
Scharstein, D., Szeliski, R.: A taxonomy and evaluation of dense two-frame stereo correspondence algorithms. Int. J. Comput. Vis. 47, 7–42 (2002)
Butler, D.J., Wulff, J., Stanley, G.B., Black, M.J.: A naturalistic open source movie for optical flow evaluation. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012. LNCS, vol. 7577, pp. 611–625. Springer, Heidelberg (2012). doi:10.1007/978-3-642-33783-3_44
Geiger, A., Lenz, P., Urtasun, R.: Are we ready for autonomous driving? The KITTI vision benchmark suite. In: Proceedings of the International Conference on Computer Vision and Pattern Recognition, pp. 3354–3361 (2012)
Kristan, M., Matas, J., Leonardis, A., Felsberg, M., Cehovin, L., Fernandez, G., Vojir, T., Hager, G., Nebehay, G., Pflugfelder, R.: The visual object tracking VOT2015 challenge results. In: Proceedings of the ICCV, pp. 1–23 (2015)
Kristan, M., Pflugfelder, R., Leonardis, A., Matas, J., Porikli, F., Čehovin, L., Nebehay, G., Fernandez, G., Vojir, T.: The VOT2013 challenge: overview and additional results (2014)
Scharstein, D., Hirschmüller, H., Kitajima, Y., Krathwohl, G., Nešić, N., Wang, X., Westling, P.: High-resolution stereo datasets with subpixel-accurate ground truth. In: Jiang, X., Hornegger, J., Koch, R. (eds.) GCPR 2014. LNCS, vol. 8753, pp. 31–42. Springer, Cham (2014). doi:10.1007/978-3-319-11752-2_3
Kristan, M., Matas, J., Leonardis, A., Vojir, T., Pflugfelder, R., Fernandez, G., Nebehay, G., Porikli, F., Cehovin, L.: A novel performance evaluation methodology for single-target trackers (2015)
Honauer, K., Maier-Hein, L., Kondermann, D.: The HCI stereo metrics: geometry-aware performance analysis of stereo algorithms. In: Proceedings of the ICCV, pp. 2120–2128 (2015)
Menze, M., Geiger, A.: Object scene flow for autonomous vehicles. In: Proceedings of the International Conference on Computer Vision and Pattern Recognition (2015)
Zendel, O., Murschitz, M., Humenberger, M., Herzner, W.: CV-HAZOP: introducing test data validation for computer vision. In: Proceedings of the ICCV (2015)
Haeusler, R., Kondermann, D.: Synthesizing real world stereo challenges. In: Weickert, J., Hein, M., Schiele, B. (eds.) GCPR 2013. LNCS, vol. 8142, pp. 164–173. Springer, Heidelberg (2013). doi:10.1007/978-3-642-40602-7_17
Kondermann, D., Nair, R., Honauer, K., Krispin, K., Andrulis, J., Brock, A., Güssefeld, B., Rahimimoghaddam, M., Hofmann, S., Brenner, C., Jähne, B.: The HCI benchmark suite: stereo and flow ground truth with uncertainties for urban autonomous driving. In: Proceedings of the International Conference on Computer Vision and Pattern Recognition Workshops (2016)
Perazzi, F., Pont-Tuset, J., McWilliams, B., Gool, L.V., Gross, M., Sorkine-Hornung, A.: A benchmark dataset and evaluation methodology for video object segmentation. In: Proceedings of the International Conference on Computer Vision and Pattern Recognition (2016)
Meister, S., Kondermann, D.: Real versus realistically rendered scenes for optical flow evaluation. In: 14th ITG Conference on Electronic Media Technology, pp. 1–6 (2011)
Dosovitskiy, A., Fischer, P., Ilg, E., Hausser, P., Hazirbas, C., Golkov, V., van der Smagt, P., Cremers, D., Brox, T.: Flownet: learning optical flow with convolutional networks, pp. 2758–2766 (2015)
Blender Online Community: Blender - a 3D modelling and rendering package (2016)
Wanner, S., Goldluecke, B.: Reconstructing reflective and transparent surfaces from epipolar plane images. In: Weickert, J., Hein, M., Schiele, B. (eds.) GCPR 2013. LNCS, vol. 8142, pp. 1–10. Springer, Heidelberg (2013). doi:10.1007/978-3-642-40602-7_1
Acknowledgment
This work was supported by the ERC Starting Grant “Light Field Imaging and Analysis” (LIA 336978, FP7-2014), the Heidelberg Collaboratory for Image Processing (Institutional Strategy ZUK49, Measure 6.4) and the AIT Vienna, Austria.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Honauer, K., Johannsen, O., Kondermann, D., Goldluecke, B. (2017). A Dataset and Evaluation Methodology for Depth Estimation on 4D Light Fields. In: Lai, SH., Lepetit, V., Nishino, K., Sato, Y. (eds) Computer Vision – ACCV 2016. ACCV 2016. Lecture Notes in Computer Science(), vol 10113. Springer, Cham. https://doi.org/10.1007/978-3-319-54187-7_2
Download citation
DOI: https://doi.org/10.1007/978-3-319-54187-7_2
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-54186-0
Online ISBN: 978-3-319-54187-7
eBook Packages: Computer ScienceComputer Science (R0)