[go: up one dir, main page]

Skip to main content

Multi-objective Particle Swarm Optimisation for Robust Dynamic Scheduling in a Permutation Flow Shop

  • Conference paper
  • First Online:
Intelligent Systems Design and Applications (ISDA 2016)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 557))

Abstract

This paper proposes a multi-objective optimisation model and particle swarm optimisation solution method for the robust dynamic scheduling of permutation flow shop in the presence of uncertainties. The proposed optimisation model for robust scheduling considers utility, stability and robustness measures to generate robust schedules that minimise the effect of different real-time events on the planned schedule. The proposed solution method is based on a predictive-reactive approach that uses particle swarm optimisation to generate robust schedules in the presence of real-time events. The evaluation of both the optimisation model and solution method are conducted considering different types of disruptions including machine breakdown and new job arrival. The obtained results showed that the proposed model and solution method gives better results than a bi-objective model that considers only utility and stability measures [1] and the classical makespan model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Katragjini, K., Vallada, E., Ruiz, R.: Flow shop rescheduling under different types of disruption. Int. J. Prod. Res. 51(3), 780–797 (2013)

    Article  Google Scholar 

  2. Pinedo, M.: Scheduling: Theory, Algorithms, and Systems, 4th edn. Springer, New York (2012)

    Book  MATH  Google Scholar 

  3. Graham, R.L., Lawer, E.L., Lenstra, J.K., Rinnooy Kan, A.H.: Optimisation and approximation in deterministic sequencing and scheduling: a survey. Ann. Discret Math. 5, 287–326 (1979)

    Article  MATH  Google Scholar 

  4. War, D.: The classification of scheduling problems under production uncertainty. Res. Logist. Prod. 4(3), 245–255 (2014)

    Google Scholar 

  5. Sabuncuoglu, I., Goren, S.: Hedging production schedules against uncertainty in manufacturing environment with a review of robustness and stability research. Int. J. Comput. Integr. Manuf. 22(2), 37–41 (2009)

    Article  Google Scholar 

  6. Suwa, H., Sandoh, H.: Online Scheduling in Manufacturing: A Cumulative Delay Approach. Springer, London (2013)

    Book  MATH  Google Scholar 

  7. Aytug, H., Lawley, M., McKay, K.: Executing production schedules in the face of uncertainties: a review and some future directions. Eur. J. 161, 86–110 (2005)

    MathSciNet  MATH  Google Scholar 

  8. Ouelhadj, D., Petrovic, S.: A survey of dynamic scheduling in manufacturing systems. J. Sched. 12(4), 417–431 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  9. Vieira, G.E., Herrmann, J.W., Lin, E.: Rescheduling manufacturing systems: a framework of strategies, policies, and methods. J. Sched. 6(1), 39–62 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  10. Cowling, P., Johansson, M.: Using real time information for effective dynamic scheduling. Eur. J. Oper. Res. 139(2), 230–244 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  11. Cowling, P., Ouelhadj, D., Petrovic, S.: A multi-agent architecture for dynamic scheduling of steel hot rolling. J. Intell. Manuf. 14, 57–470 (2003)

    Article  Google Scholar 

  12. Cowling, P.I., Ouelhadj, D., Petrovic, S.: Dynamic scheduling of steel casting and milling using multi-agents. Prod. Plan. Control 15(2), 178–188 (2004)

    Article  Google Scholar 

  13. Rahmani, D., Heydari, M.: Robust and stable flow shop scheduling with unexpected arrivals of new jobs and uncertain processing times. J. Manuf. Syst. 33(1), 84–92 (2014)

    Article  Google Scholar 

  14. Church, L.K., Uzsoy, R.: Analysis of periodic and event-driven rescheduling policies in dynamic shops. Int. J. Comput. Integr. Manuf. 5(3), 153–163 (1992)

    Article  Google Scholar 

  15. O’Donovan, R., Uzsoy, R., McKay, K.N.: Predictable scheduling of a single machine with breakdowns and sensitive jobs. Int. J. Prod. Res. 37(18), 4217–4233 (1999)

    Article  MATH  Google Scholar 

  16. Vieira, G.E., Herrmann, J.W., Lin, E.: Predicting the performance of rescheduling strategies for parallel machine systems. J. Manuf. Syst. 19(4), 256–266 (2000)

    Article  Google Scholar 

  17. Hall, N.G., Potts, C.N.: Rescheduling for new orders. Oper. Res. 3(52), 440–453 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  18. Rangsaritratsamee, R., Ferrell, W.G., Kurz, M.B.: Dynamic rescheduling that simultaneously considers efficiency and stability. Comput. Ind. Eng. 46(1), 1–15 (2004)

    Article  Google Scholar 

  19. Kopanos, G.M., Capo, E., Espun, A., Puigjaner, L.: Costs for rescheduling actions: a critical issue for reducing the gap between scheduling theory and practice. Ind. Eng. Chem. Res. 47(22), 8785–8795 (2008)

    Article  Google Scholar 

  20. Kennedy, J., Eberhart, R.: Particle swarm optimisation. In: Proceedings of International Conference on Neural Networks. ICNN 95, vol. 4, pp. 1942–1948 (1995)

    Google Scholar 

  21. Blackwell, T.: Particle swarm optimisation in dynamic environments. Evol. Comput. Dyn. Uncertain Environ. 51, 29–49 (2007)

    Article  Google Scholar 

  22. Li, X., Branke, J., Blackwell, T.: Particle swarm with speciation and adaptation in a dynamic environment. In: Proceedings of the 8th GECCO, p. 51 (2006)

    Google Scholar 

  23. Zhang, Y., Wang, S., Ji, G.: A comprehensive survey on particle swarm optimisation algorithm and its applications, vol. 2015, p. 38 (2015)

    Google Scholar 

  24. Blum, C., Merkle, D.: Swarm Intelligence: Introduction and Applications. Springer, Heidelberg (2008)

    Book  MATH  Google Scholar 

  25. Eslami, M., Shareef, H., Khajehzadeh, M., Mohamed, A.: An effective particle swarm optimisation for global optimisation. Comput. Intell. Syst. 316, 267–274 (2012)

    Google Scholar 

  26. Lian, Z., Gu, X., Jiao, B.: A novel particle swarm optimisation algorithm for permutation flow-shop scheduling to minimise makespan. Chaos Solitons Fractals 35(4), 851–861 (2008)

    Article  MATH  Google Scholar 

  27. Ramanan, T., Iqbal, M., Umarali, K.: A particle swarm optimisation approach for permutation flow shop scheduling problem. Int. J. Simul. Multidiscip. Des. Optim. 5, A20 (2014)

    Article  Google Scholar 

  28. Tasgetiren, M.F., Sevkli, M., Liang, Y.-C., Gencyilmaz, G.: Particle swarm optimization algorithm for permutation flowshop sequencing problem. In: Dorigo, M., Birattari, M., Blum, C., Gambardella, L.M., Mondada, F., Stützle, T. (eds.) ANTS 2004. LNCS, vol. 3172, pp. 382–389. Springer, Heidelberg (2004). doi:10.1007/978-3-540-28646-2_38

    Chapter  Google Scholar 

  29. Taillard, E.: Benchmarks for basic scheduling problems. Eur. J. Oper. Res. 64, 278–285 (1993)

    Article  MATH  Google Scholar 

  30. Jones, D.: A practical weight sensitivity algorithm for goal and multiple objective programming. Eur. J. Oper. Res. 213(1), 238–245 (2011)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohanad Al-Behadili .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Al-Behadili, M., Ouelhadj, D., Jones, D. (2017). Multi-objective Particle Swarm Optimisation for Robust Dynamic Scheduling in a Permutation Flow Shop. In: Madureira, A., Abraham, A., Gamboa, D., Novais, P. (eds) Intelligent Systems Design and Applications. ISDA 2016. Advances in Intelligent Systems and Computing, vol 557. Springer, Cham. https://doi.org/10.1007/978-3-319-53480-0_49

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-53480-0_49

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-53479-4

  • Online ISBN: 978-3-319-53480-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics