[go: up one dir, main page]

Skip to main content

Vertex Coloring with Communication and Local Memory Constraints in Synchronous Broadcast Networks

  • Conference paper
  • First Online:
Algorithms for Sensor Systems (ALGOSENSORS 2016)

Abstract

This paper considers the broadcast/receive communication model in which message collisions and message conflicts can occur because processes share frequency bands. (A collision occurs when, during the same round, messages are sent to the same process by too many neighbors. A conflict occurs when a process and one of its neighbors broadcast during the same round.) More precisely, the paper considers the case where, during a round, a process may either broadcast a message to its neighbors or receive a message from at most m of them. This captures communication-related constraints or a local memory constraint stating that, whatever the number of neighbors of a process, its local memory allows it to receive and store at most m messages during each round. The paper defines first the corresponding generic vertex multi-coloring problem (a vertex can have several colors). It focuses then on tree networks, for which it presents a lower bound on the number of colors K that are necessary (namely, \(K=\lceil \frac{\varDelta }{m}\rceil +1\), where \(\varDelta \) is the maximal degree of the communication graph), and an associated coloring algorithm, which is optimal with respect to K.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    The case where processes may exhibit faulty behaviors (such as crashes or Byzantine failures) is addressed in several books (e.g., [2, 20, 22, 23]).

  2. 2.

    \(\log ^* n\) is the number of times the function \(\log \) needs to be iteratively applied in \(\log (\log (\log ( ...(\log n))))\) to obtain a value \(\le 2\). As an example, if n is the number of atoms in the universe, \(\log ^* n \backsimeq 5\).

  3. 3.

    Some initial asymmetry is necessary to solve breaking symmetry problems with a deterministic algorithm.

  4. 4.

    Depending on the underlying hardware (e.g., multi-frequency bandwidth, duplexer, diplexer), variants of this broadcast/receive communication pattern can be envisaged. The algorithms presented in this paper can be modified to take them into account.

  5. 5.

    As we will see, conflicts are prevented by the message exchange pattern imposed by the algorithm.

  6. 6.

    Differently from a set, a multiset (also called a a bag), can contain several times the same element. Hence, while \(\{a,b,c\}\) and \(\{a,b,a,c,c,c\}\) are the same set, they are different multisets.

  7. 7.

    This is because (a) distance-2 coloring ensures that any vertex and its neighbors have different colors, and (b) there are at most m colors \(c_1,...,c_x \in [0.. (K*m)-1]\) (hence \(x\le m\)), such that \((c_1 \mathsf{~mod~} K) = \cdots = (c_x \mathsf{~mod~} K) =c \in [0..(K-1)]\).

References

  1. Angluin, D.: Local and global properties in networks of processors. In: Proceedings of 12th ACM Symposium on Theory of Computation (STOC 1981), pp. 82–93. ACM Press (1981)

    Google Scholar 

  2. Attiya, H., Welch, J.: Distributed Computing: Fundamentals, Simulations and Advanced Topics, 2nd edn. Wiley-Interscience, Hoboken (2004)

    Book  MATH  Google Scholar 

  3. Barenboim, L., Elkin, M.: Deterministic distributed vertex coloring in polylogarithmic time. J. ACM 58(5), 23 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  4. Barenboim, L., Elkin, M.: Distributed Gaph Coloring, Fundamental and Recent Developments, p. 155. Morgan & Claypool Publishers (2014)

    Google Scholar 

  5. Barenboim, L., Elkin, M., Kuhn, F.: Distributed (Delta+1)-coloring in linear (in Delta) time. SIAM J. Comput. 43(1), 72–95 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  6. Blair, J., Manne, F.: An efficient self-stabilizing distance-2 coloring algorithm. In: Kutten, S., Žerovnik, J. (eds.) SIROCCO 2009. LNCS, vol. 5869, pp. 237–251. Springer, Heidelberg (2010). doi:10.1007/978-3-642-11476-2_19

    Chapter  Google Scholar 

  7. Bozdağ, D., Catalyurek, U., Gebremedhin, A.H., Manne, F., Boman, E.G., Özgüner, F.: A parallel distance-2 graph coloring algorithm for distributed memory computers. In: Yang, L.T., Rana, O.F., Martino, B., Dongarra, J. (eds.) HPCC 2005. LNCS, vol. 3726, pp. 796–806. Springer, Heidelberg (2005). doi:10.1007/11557654_90

    Chapter  Google Scholar 

  8. Bozdag, D., Gebremedhin, A.S., Manne, F., Boman, G., Çatalyürek, U.V.: A framework for scalable greedy coloring on distributed-memory parallel computers. J. Parallel Distrib. Comput. 68(4), 515–535 (2008)

    Article  MATH  Google Scholar 

  9. Chipara, O., Lu, C., Stankovic, J., Roman, G.-C.: Dynamic conflict-free transmission scheduling for sensor network queries. IEEE Trans. Mobile Comput. 10(5), 734–748 (2011)

    Article  Google Scholar 

  10. Cole, R., Vishkin, U.: Deterministic coin tossing with applications to optimal parallel list ranking. Inf. Control 70(1), 32–53 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  11. Frey, D., Lakhlef, H., Raynal, M.: Optimal collision/conflict-free distance-2 coloring in synchronous broadcast/receive tree networks. Research Report (2015). https://hal.inria.fr/hal-01248428

  12. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W.H. Freeman & Co., New York (1979)

    MATH  Google Scholar 

  13. Gebremedhin, A.H., Manne, F., Pothen, A.: Parallel distance-k coloring algorithms for numerical optimization. In: Monien, B., Feldmann, R. (eds.) Euro-Par 2002. LNCS, vol. 2400, pp. 912–921. Springer, Heidelberg (2002). doi:10.1007/3-540-45706-2_130

    Chapter  Google Scholar 

  14. Goldberg, A., Plotkin, S., Shannon, G.: Parallel symmetry-breaking in sparse graphs. SIAM J. Disc. Math. 1(4), 434–446 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  15. Herman, T., Tixeuil, S.: A sistributed TDMA slot assignment algorithm for wireless sensor networks. In: Nikoletseas, S.E., Rolim, J.D.P. (eds.) ALGOSENSORS 2004. LNCS, vol. 3121, pp. 45–58. Springer, Heidelberg (2004). doi:10.1007/978-3-540-27820-7_6

    Chapter  Google Scholar 

  16. Hugh, H.H., Molloy, M., Reed, B.: Colouring a graph frugally. Combinatorica 17(4), 469–482 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  17. Kuhn, F., Wattenhofer, R.: On the complexity of distributed graph coloring. In: Proceedings of 25th ACM Symposium Principles of Distributed Computing (PODC 2006), pp. 7–15. ACM Press (2006)

    Google Scholar 

  18. Lakhlef, H., Raynal, M., Taïani, F.: Vertex coloring with communication and local memory constraints in synchronous broadcast networks. Tech report 2035, p. 24. IRISA, Université de Rennes (F) (2016). https://hal.inria.fr/hal-01300095

  19. Linial, N.: Locality in distributed graph algorithms. SIAM J. Comput. 21(1), 193–201 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  20. Lynch, N.A.: Distributed Algorithms. Morgan Kaufmann, San Francisco (1996)

    MATH  Google Scholar 

  21. Molloy, M., Bruce, R.B.: Asymptotically optimal frugal colouring. J. Comb. Theory Ser. B 100(2), 247–249 (2010). Corrigendum in J. Comb. Theory Ser. B 100(2), 226–246 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  22. Peleg, D.: Distributed Computing, A Locally Sensitive Approach. SIAM Monographs on Discrete Mathematics and Applications, p. 343 (2000). ISBN 0-89871-464-8

    Google Scholar 

  23. Raynal, M.: Fault-Tolerant Agreement in Synchronous Message-Passing Systems, p. 165. Morgan & Claypool Publishers (2010). ISBN 978-1-60845-525-6

    Google Scholar 

  24. Raynal, M.: Distributed Algorithms for Message-Passing Systems. Springer, Heidelberg (2013). ISBN 978-3-642-38122-5

    Book  MATH  Google Scholar 

Download references

Acknowledgments

This work has been partially supported by the Franco-German DFG-ANR Project 40300781 DISCMAT (devoted to connections between mathematics and distributed computing), and the Franco-Hong Kong ANR-RGC Joint Research Programme 12-IS02-004-02 CO2Dim.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michel Raynal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Lakhlef, H., Raynal, M., Taïani, F. (2017). Vertex Coloring with Communication and Local Memory Constraints in Synchronous Broadcast Networks. In: Chrobak, M., Fernández Anta, A., Gąsieniec, L., Klasing, R. (eds) Algorithms for Sensor Systems. ALGOSENSORS 2016. Lecture Notes in Computer Science(), vol 10050. Springer, Cham. https://doi.org/10.1007/978-3-319-53058-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-53058-1_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-53057-4

  • Online ISBN: 978-3-319-53058-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics