Abstract
Stress has a big impact in the current society, being the cause or the incentive of several diseases. Therefore, its detection and monitorization has been the focus of a big number of investigations in the last decades. This work proposes the use of physiological variables such as the electrocardiogram (ECG), the galvanic skin response (GSR) and the respiration (RSP) in order to estimate the level and classify the type of stress. On that purpose, an algorithm based on fuzzy logic has been implemented. This computer-intelligent technique has been combined with a structured processing shaped in state machine. This processing classifies stress in 3 different phases or states: alarm, continued stress and relax. An improved estimation of stress level is obtained at the end, considering the last progresses made by different authors. All this is accompanied by stress classification, which is the novelty compared to other works.
Similar content being viewed by others
References
Morris, C.G., Maisto, A.A.: Introducción a la Psicología. Pearson Educación, Mexico (2005)
Kreibig, S.D.: Autonomic nervous system activity in emotion: A review. Biol. Psychol. 3(3), 394–421 (2010)
Lee, C.K. et al.: Using neural network to recognize human emotions from heart rate variability and skin resistance. In: 27th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 5523–5525 (2006)
Porges, S.W.: The polyvagal theory: phylogenetic substrates of a social nervous system. Int. J. Psychophysiol. 42(2), 123–146 (2001)
Bloch, S., et al.: Specific respiratory patterns distinguish among human basic emotions. Int. J. Psychophysiol. 11(2), 141–154 (1991)
Ekman, P., et al.: Autonomic nervous system activity distinguishes among emotions. Science 221(4616), 1208–1210 (1983)
De Rivera, J.G., et al.: La valoración de sucesos vitales: adaptación española de la escala de Holmes y rahe. Psiquis 4(1), 7–11 (1983)
De Camargo, B.: Estrés, síndrome general de adaptación o reacción general de alarma. Revista Médico Científica 17(2), 78–86 (2010)
Nelson, R.J.: An introduction to behavioral endocrinology. Sinauer Associates, Sunderland (2005)
Cacioppo, J.T., et al.: Handbook of Psychophysiology. Cambridge University Press, Cambridge (2007)
Healey, J.A., Picard, R.W.: Detecting stress during real-world driving tasks using physiological sensors. IEEE Trans. Intell. Transp. Syst. 6(2), 156–166 (2005). IEEE
Cannon, W.B.: Stresses and strains of homeostasis. Am. J. Med. Sci. 189(1), 13–14 (1935). LWW
Wozniak, M., et al.: A survey of multiple classifier systems as hybrid systems. Inf. Fusion 16, 3–17 (2014). Elsevier
Salazar-Ramirez, A., Irigoyen, E., Martinez, R.: Enhancements for a robust fuzzy detection of stress. In: de la Puerta, J.G., Ferreira, I.G., Bringas, P.G., Klett, F., Abraham, A., de Carvalho, A.C., Herrero, A., Baruque, B., Quintián, H., Corchado, E. (eds.) International Joint Conference SOCO 2014-CISIS 2014-ICEUTE 2014. AISC, vol. 299, pp. 229–238. Springer, Heidelberg (2014)
Chang, C.-Y., et al.: Physiological emotion analysis using support vector regression. Neurocomputing 122, 79–87 (2013)
De Santos Sierra, A., et al.: A stress-detection system based on physiological signals and fuzzy logic. IEEE Trans. Ind. Electron. 58(10), 4857–4865 (2011). IEEE
Sakr, G.E., et al.: Support vector machines to define and detect agitation transition. IEEE Trans. Affect. Comput. 1(2), 98–108 (2010). IEEE
Martinez, R.: Diseño de un sistema de detección y clasificación de cambios emocionales basados en el análisis de señales fisiológicas no intrusivas. University of the Basque Country (2016)
Pauws, S.C., et al.: Insightful stress detection from physiology modalities using learning vector quantization. Neurocomputing 151, 873–882 (2015). Elsevier
Subramanya, K., et al.: A wearable device for monitoring galvanic skin response to accurately predict changes in blood pressure indexes and cardiovascular dynamics. In: 2013 Annual IEEE India Conference (INDICON), pp. 1–4 (2013)
Martinez, R., et al.: First results in modelling stress situations by analysing physiological human signals. In: Proceedings of IADIS International Conference on e-Health, pp. 171–175 (2012)
Zadeh, L.A.: Fuzzy logic = computing with words. IEEE Trans. Fuzzy Syst. 4, 103–111 (1996). IEEE
Gross, J.J., Levenson, R.W.: Emotion elicitation using films. Cogn. Emot. 9(1), 87–108 (1995). Taylor & Francis
Bradley, M.M., Lang, P.J.: Measuring emotion: the self-assessment manikin and the semantic differential. J. Behav. Ther. Exp. Psychiatry 25(1), 49–59 (1994). Elsevier
Zalabarria, U., et al.: Procesamiento robusto para el análisis avanzado de señales electrocardiográficas afectadas por perturbaciones. Actas de las XXXVI Jornadas de Automática, pp. 807–814 (2015)
Bari, V., et al.: Nonlinear effects of respiration on the crosstalk between cardiovascular and cerebrovascular control systems. Phil. Trans. R. Soc. A 374(2067), 20150179 (2016). The Royal Society
Porta, A., et al.: Conditional symbolic analysis detects nonlinear influences of respiration on cardiovascular control in humans. Phil. Trans. R. Soc. A 373(2034), 1–21 (2015). The Royal Society
Acknowledgements
This work has been performed partially thanks to the support of the Foundation Jesús de Gangoiti Barrera, to which we are deeply grateful. It would not have been possible to perform it without the involvement of the biomedical investigation group of GICI, to which we also thank its effort and dedication.
Author information
Authors and Affiliations
Corresponding authors
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Zalabarria, U., Irigoyen, E., Martínez, R., Salazar-Ramirez, A. (2017). Detection of Stress Level and Phases by Advanced Physiological Signal Processing Based on Fuzzy Logic. In: Graña, M., López-Guede, J.M., Etxaniz, O., Herrero, Á., Quintián, H., Corchado, E. (eds) International Joint Conference SOCO’16-CISIS’16-ICEUTE’16. SOCO CISIS ICEUTE 2016 2016 2016. Advances in Intelligent Systems and Computing, vol 527. Springer, Cham. https://doi.org/10.1007/978-3-319-47364-2_29
Download citation
DOI: https://doi.org/10.1007/978-3-319-47364-2_29
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-47363-5
Online ISBN: 978-3-319-47364-2
eBook Packages: EngineeringEngineering (R0)