[go: up one dir, main page]

Skip to main content

Detection of Stress Level and Phases by Advanced Physiological Signal Processing Based on Fuzzy Logic

  • Conference paper
  • First Online:
International Joint Conference SOCO’16-CISIS’16-ICEUTE’16 (SOCO 2016, CISIS 2016, ICEUTE 2016)

Abstract

Stress has a big impact in the current society, being the cause or the incentive of several diseases. Therefore, its detection and monitorization has been the focus of a big number of investigations in the last decades. This work proposes the use of physiological variables such as the electrocardiogram (ECG), the galvanic skin response (GSR) and the respiration (RSP) in order to estimate the level and classify the type of stress. On that purpose, an algorithm based on fuzzy logic has been implemented. This computer-intelligent technique has been combined with a structured processing shaped in state machine. This processing classifies stress in 3 different phases or states: alarm, continued stress and relax. An improved estimation of stress level is obtained at the end, considering the last progresses made by different authors. All this is accompanied by stress classification, which is the novelty compared to other works.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  1. Morris, C.G., Maisto, A.A.: Introducción a la Psicología. Pearson Educación, Mexico (2005)

    Google Scholar 

  2. Kreibig, S.D.: Autonomic nervous system activity in emotion: A review. Biol. Psychol. 3(3), 394–421 (2010)

    Article  Google Scholar 

  3. Lee, C.K. et al.: Using neural network to recognize human emotions from heart rate variability and skin resistance. In: 27th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 5523–5525 (2006)

    Google Scholar 

  4. Porges, S.W.: The polyvagal theory: phylogenetic substrates of a social nervous system. Int. J. Psychophysiol. 42(2), 123–146 (2001)

    Article  Google Scholar 

  5. Bloch, S., et al.: Specific respiratory patterns distinguish among human basic emotions. Int. J. Psychophysiol. 11(2), 141–154 (1991)

    Article  Google Scholar 

  6. Ekman, P., et al.: Autonomic nervous system activity distinguishes among emotions. Science 221(4616), 1208–1210 (1983)

    Article  Google Scholar 

  7. De Rivera, J.G., et al.: La valoración de sucesos vitales: adaptación española de la escala de Holmes y rahe. Psiquis 4(1), 7–11 (1983)

    Google Scholar 

  8. De Camargo, B.: Estrés, síndrome general de adaptación o reacción general de alarma. Revista Médico Científica 17(2), 78–86 (2010)

    Google Scholar 

  9. Nelson, R.J.: An introduction to behavioral endocrinology. Sinauer Associates, Sunderland (2005)

    Google Scholar 

  10. Cacioppo, J.T., et al.: Handbook of Psychophysiology. Cambridge University Press, Cambridge (2007)

    Google Scholar 

  11. Healey, J.A., Picard, R.W.: Detecting stress during real-world driving tasks using physiological sensors. IEEE Trans. Intell. Transp. Syst. 6(2), 156–166 (2005). IEEE

    Article  Google Scholar 

  12. Cannon, W.B.: Stresses and strains of homeostasis. Am. J. Med. Sci. 189(1), 13–14 (1935). LWW

    Article  Google Scholar 

  13. Wozniak, M., et al.: A survey of multiple classifier systems as hybrid systems. Inf. Fusion 16, 3–17 (2014). Elsevier

    Article  Google Scholar 

  14. Salazar-Ramirez, A., Irigoyen, E., Martinez, R.: Enhancements for a robust fuzzy detection of stress. In: de la Puerta, J.G., Ferreira, I.G., Bringas, P.G., Klett, F., Abraham, A., de Carvalho, A.C., Herrero, A., Baruque, B., Quintián, H., Corchado, E. (eds.) International Joint Conference SOCO 2014-CISIS 2014-ICEUTE 2014. AISC, vol. 299, pp. 229–238. Springer, Heidelberg (2014)

    Google Scholar 

  15. Chang, C.-Y., et al.: Physiological emotion analysis using support vector regression. Neurocomputing 122, 79–87 (2013)

    Article  Google Scholar 

  16. De Santos Sierra, A., et al.: A stress-detection system based on physiological signals and fuzzy logic. IEEE Trans. Ind. Electron. 58(10), 4857–4865 (2011). IEEE

    Article  Google Scholar 

  17. Sakr, G.E., et al.: Support vector machines to define and detect agitation transition. IEEE Trans. Affect. Comput. 1(2), 98–108 (2010). IEEE

    Article  Google Scholar 

  18. Martinez, R.: Diseño de un sistema de detección y clasificación de cambios emocionales basados en el análisis de señales fisiológicas no intrusivas. University of the Basque Country (2016)

    Google Scholar 

  19. Pauws, S.C., et al.: Insightful stress detection from physiology modalities using learning vector quantization. Neurocomputing 151, 873–882 (2015). Elsevier

    Article  Google Scholar 

  20. Subramanya, K., et al.: A wearable device for monitoring galvanic skin response to accurately predict changes in blood pressure indexes and cardiovascular dynamics. In: 2013 Annual IEEE India Conference (INDICON), pp. 1–4 (2013)

    Google Scholar 

  21. Martinez, R., et al.: First results in modelling stress situations by analysing physiological human signals. In: Proceedings of IADIS International Conference on e-Health, pp. 171–175 (2012)

    Google Scholar 

  22. Zadeh, L.A.: Fuzzy logic = computing with words. IEEE Trans. Fuzzy Syst. 4, 103–111 (1996). IEEE

    Article  Google Scholar 

  23. Gross, J.J., Levenson, R.W.: Emotion elicitation using films. Cogn. Emot. 9(1), 87–108 (1995). Taylor & Francis

    Article  Google Scholar 

  24. Bradley, M.M., Lang, P.J.: Measuring emotion: the self-assessment manikin and the semantic differential. J. Behav. Ther. Exp. Psychiatry 25(1), 49–59 (1994). Elsevier

    Article  Google Scholar 

  25. Zalabarria, U., et al.: Procesamiento robusto para el análisis avanzado de señales electrocardiográficas afectadas por perturbaciones. Actas de las XXXVI Jornadas de Automática, pp. 807–814 (2015)

    Google Scholar 

  26. Bari, V., et al.: Nonlinear effects of respiration on the crosstalk between cardiovascular and cerebrovascular control systems. Phil. Trans. R. Soc. A 374(2067), 20150179 (2016). The Royal Society

    Article  Google Scholar 

  27. Porta, A., et al.: Conditional symbolic analysis detects nonlinear influences of respiration on cardiovascular control in humans. Phil. Trans. R. Soc. A 373(2034), 1–21 (2015). The Royal Society

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work has been performed partially thanks to the support of the Foundation Jesús de Gangoiti Barrera, to which we are deeply grateful. It would not have been possible to perform it without the involvement of the biomedical investigation group of GICI, to which we also thank its effort and dedication.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Unai Zalabarria or Asier Salazar-Ramirez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Zalabarria, U., Irigoyen, E., Martínez, R., Salazar-Ramirez, A. (2017). Detection of Stress Level and Phases by Advanced Physiological Signal Processing Based on Fuzzy Logic. In: Graña, M., López-Guede, J.M., Etxaniz, O., Herrero, Á., Quintián, H., Corchado, E. (eds) International Joint Conference SOCO’16-CISIS’16-ICEUTE’16. SOCO CISIS ICEUTE 2016 2016 2016. Advances in Intelligent Systems and Computing, vol 527. Springer, Cham. https://doi.org/10.1007/978-3-319-47364-2_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-47364-2_29

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-47363-5

  • Online ISBN: 978-3-319-47364-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics