[go: up one dir, main page]

Skip to main content

Obtaining Shape Descriptors from a Concave Hull-Based Clustering Algorithm

  • Conference paper
  • First Online:
Advances in Intelligent Data Analysis XV (IDA 2016)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 9897))

Included in the following conference series:

Abstract

In data analysis clustering is one of the core processes to find groups in otherwise unstructured data. Determining the number of clusters or finding clusters of arbitrary shape whose convex hulls overlap is in general a hard problem. In this paper we present a method for clustering data points by iteratively shrinking the convex hull of the data set. Subdividing the created hulls leads to shape descriptors of the individual clusters. We tested our algorithm on several data sets and achieved high degrees of accuracy. The cluster definition employed uses a notion of spatial separation. We also compare our algorithm against a similar algorithm that automatically detects the boundaries and the number of clusters. The experiments show that our algorithm yields the better results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Barber, C.B., Dobkin, D.P., Huhdanpaa, H.: The quickhull algorithm for convex hulls. ACM Trans. Math. Softw. (TOMS) 22(4), 469–483 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  2. Braune, C., Besecke, S., Kruse, R.: Density based clustering: alternatives to DBSCAN. In: Celebi, E.B. (ed.) Partitional Clustering Algorithms, pp. 193–213. Springer, Heidelberg (2015)

    Google Scholar 

  3. Chan, T.M.: Optimal output-sensitive convex hull algorithms in two and three dimensions. Discrete Comput. Geom. 16(4), 361–368 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  4. Delaunay, B.: Sur la sphere vide. Izv. Akad. Nauk SSSR, Otdelenie Matematicheskii i Estestvennyka Nauk, 7(793–800), 1–2 (1934)

    Google Scholar 

  5. Deng, M., Liu, Q., Cheng, T., Shi, Y.: An adaptive spatial clustering algorithm based on Delaunay triangulation. Comput. Environ. Urban Syst. 35(4), 320–332 (2011)

    Article  Google Scholar 

  6. Duckham, M., Kulik, L., Worboys, M., Galton, A.: Efficient generation of simple polygons for characterizing the shape of a set of points in the plane. Pattern Recogn. 41(10), 3224–3236 (2008)

    Article  MATH  Google Scholar 

  7. Edelsbrunner, H., Kirkpatrick, D.G., Seidel, R.: On the shape of a set of points in the plane. IEEE Trans. Inf. Theory 29(4), 551–559 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  8. Estivill-Castro, V., Lee, I.: Autoclust: automatic clustering via boundary extraction for mining massive point-data sets. In: Proceedings of the 5th International Conference on Geocomputation, pp. 23–25 (2000)

    Google Scholar 

  9. Graham, R.L.: An efficient algorithm for determining the convex hull of a finite planar set. Inf. Process. Lett. 1(4), 132–133 (1972)

    Article  MATH  Google Scholar 

  10. Höppner, F., Klawonn, F., Kruse, R., Runkler, T.: Fuzzy Cluster Analysis: Methods for Classification, Data Analysis and Image Processing. Wiley, London (1999)

    MATH  Google Scholar 

  11. Hubert, L., Arabie, P.: Comparing partitions. J. Classif. 2(1), 193–218 (1985)

    Article  MATH  Google Scholar 

  12. Jarvis, R.A.: On the identification of the convex hull of a finite set of points in the plane. Inf. Process. Lett. 2(1), 18–21 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  13. Klawonn, F., Kruse, R., Winkler, R.: Fuzzy clustering: more than just fuzzification. Fuzzy Sets Syst. 281, 272–279 (2015)

    Article  MathSciNet  Google Scholar 

  14. Kruse, R., Borgelt, C., Klawonn, F., Moewes, C., Steinbrecher, M., Held, P.: Computational Intelligence: A Methodological Introduction. Springer Science & Business Media, London (2013)

    Book  MATH  Google Scholar 

  15. Liparulo, L., Proietti, A., Panella, M.: Fuzzy clustering using the convex hull as geometrical model. Adv. Fuzzy Syst. 2015 (2015). Article No. 6

    Google Scholar 

  16. Liu, D., Nosovskiy, G.V., Sourina, O.: Effective clustering and boundary detection algorithm based on Delaunay triangulation. Pattern Recogn. Lett. 29(9), 1261–1273 (2008)

    Article  MATH  Google Scholar 

  17. Moreira, A., Santos, M.Y.: Concave hull: a k-nearest neighbours approach for the computation of the region occupied by a set of points. In: Proceedings of the International Conference on Computer Graphics Theory and Applications, GRAPP 2007 (2007)

    Google Scholar 

  18. Rosén, E., Jansson, E., Brundin, M.: Implementation of a fast and efficient concave hull algorithm. Technical report, University of Uppsala, Sweden (2014)

    Google Scholar 

  19. Rosenberg, A., Hirschberg, J.: V-measure: a conditional entropy-based external cluster evaluation measure. In: EMNLP-CoNLL, vol. 7, pp. 410–420 (2007)

    Google Scholar 

  20. Yang, X., Cui, W.: A novel spatial clustering algorithm based on Delaunay triangulation. In: International Conference on Earth Observation Data Processing and Analysis, p. 728530. International Society for Optics and Photonics (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Braune .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this paper

Cite this paper

Braune, C., Dankel, M., Kruse, R. (2016). Obtaining Shape Descriptors from a Concave Hull-Based Clustering Algorithm. In: Boström, H., Knobbe, A., Soares, C., Papapetrou, P. (eds) Advances in Intelligent Data Analysis XV. IDA 2016. Lecture Notes in Computer Science(), vol 9897. Springer, Cham. https://doi.org/10.1007/978-3-319-46349-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-46349-0_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-46348-3

  • Online ISBN: 978-3-319-46349-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics