[go: up one dir, main page]

Skip to main content

Robust Interactive Multi-label Segmentation with an Advanced Edge Detector

  • Conference paper
  • First Online:
Pattern Recognition (GCPR 2016)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 9796))

Included in the following conference series:

Abstract

Recent advances on convex relaxation methods allow for a flexible formulation of many interactive multi-label segmentation methods. The building blocks are a likelihood specified for each pixel and each label, and a penalty for the boundary length of each segment. While many sophisticated likelihood estimations based on various statistical measures have been investigated, the boundary length is usually measured in a metric induced by simple image gradients. We show that complementing these methods with recent advances of edge detectors yields an immense quality improvement. A remarkable feature of the proposed method is the ability to correct some erroneous labels, when computer generated initial labels are considered. This allows us to improve state-of-the-art methods for motion segmentation in videos by 5–10 % with respect to the F-measure (Dice score).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Instead of integrating over the set of scribbles they sum over all scribbled pixels.

References

  1. Arbelaez, P., Maire, M., Fowlkes, C., Malik, J.: Contour detection and hierarchical image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 33(5), 898–916 (2011)

    Article  Google Scholar 

  2. Bauer, S., Porz, N., Meier, R., Pica, A., Slotboom, J., Wiest, R., Reyes, M.: Interactive segmentation of MR images from brain tumor patients. In: Proceedings of the 11th International Symposium on Biomedical Imaging, Beijing, China, pp. 862–865 (2014)

    Google Scholar 

  3. Bergbauer, J., Nieuwenhuis, C., Souiai, M., Cremers, D.: Proximity priors for variational semantic segmentation and recognition. In: ICCV Workshop on Graphical Models for Scene Understanding, Sydney, Australia, pp. 15–21 (2013)

    Google Scholar 

  4. Boykov, Y.Y., Jolly, M.P.: Interactive graph cuts for optimal boundary & region segmentation of objects in N-D images. In: Proceedings of the 2001 IEEE International Conference on Computer Vision, Vancouver, Canada, pp. 105–112 (2001)

    Google Scholar 

  5. Brox, T., Malik, J.: Object segmentation by long term analysis of point trajectories. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part V. LNCS, vol. 6315, pp. 282–295. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  6. Canny, J.: A computational approach to edge detection. IEEE Trans. Pattern Anal. Mach. Intell. 8, 679–698 (1986)

    Article  Google Scholar 

  7. Chambolle, A., Cremers, D., Pock, T.: A convex approach to minimal partitions. SIAM J. Appl. Math. 5(4), 1113–1158 (2012)

    MathSciNet  MATH  Google Scholar 

  8. Chambolle, A., Pock, T.: A first-order primal-dual algorithm for convex problems with applications to imaging. J. Math. Imaging Vision 40(1), 120–145 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  9. Chan, T.F., Vese, L.A.: Active contours without edges. IEEE Trans. Image Process. 10(2), 266–277 (2001)

    Article  MATH  Google Scholar 

  10. Diebold, J., Demmel, N., Hazırbaş, C., Moeller, M., Cremers, D.: Interactive multi-label segmentation of RGB-D images. In: Aujol, J.-F., Nikolova, M., Papadakis, N. (eds.) SSVM 2015. LNCS, vol. 9087, pp. 294–306. Springer, Heidelberg (2015)

    Google Scholar 

  11. Dollár, P., Zitnick, C.L.: Structured forests for fast edge detection. In: Proceedings of the 2013 IEEE International Conference on Computer Vision, Washington, DC, USA, pp. 1841–1848 (2013)

    Google Scholar 

  12. Dollár, P., Zitnick, C.L.: Fast edge detection using structured forests. IEEE Trans. Pattern Anal. Mach. Intell. 37(8), 1558–1570 (2015)

    Article  Google Scholar 

  13. Felzenszwalb, P.F., Huttenlocher, D.P.: Efficient graph-based image segmentation. Int. J. Comput. Vision 59(2), 167–181 (2004)

    Article  Google Scholar 

  14. Feng, C., Zhao, D., Huang, M.: Segmentation of stroke lesions in multi-spectral MR images using bias correction embedded FCM and three phase level set. In: MICCAI Ischemic Stroke Lesion Segmentation, p. 3 (2015)

    Google Scholar 

  15. Geman, S., Geman, D.: Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images. IEEE Trans. Pattern Anal. Mach. Intell. 6, 721–741 (1984)

    Article  MATH  Google Scholar 

  16. Keuper, M., Andres, B., Brox, T.: Motion trajectory segmentation via minimum cost multicuts. In: Proceedings of the 2015 IEEE International Conference on Computer Vision, Santiago, Chile, pp. 3271–3279 (2015)

    Google Scholar 

  17. Mumford, D., Shah, J.: Optimal approximation of piecewise smooth functions and associated variational problems. Commun. Pure Appl. Math. 42, 577–685 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  18. Nieuwenhuis, C., Cremers, D.: Spatially varying color distributions for interactive multilabel segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 35(5), 1234–1247 (2013)

    Article  Google Scholar 

  19. Nieuwenhuis, C., Hawe, S., Kleinsteuber, M., Cremers, D.: Co-sparse textural similarity for interactive segmentation. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014, Part VI. LNCS, vol. 8694, pp. 285–301. Springer, Heidelberg (2014)

    Google Scholar 

  20. Ochs, P., Brox, T.: Object segmentation in video: a hierarchical variational approach for turning point trajectories into dense regions. In: Proceedings of the 2011 IEEE International Conference on Computer Vision, Barcelona, Spain, pp. 1583–1590 (2011)

    Google Scholar 

  21. Ochs, P., Malik, J., Brox, T.: Segmentation of moving objects by long term video analysis. IEEE Trans. Pattern Anal. Mach. Intell. 36(6), 1187–1200 (2014)

    Article  Google Scholar 

  22. Perona, P., Malik, J.: Scale space and edge detection using anisotropic diffusion. IEEE Trans. Pattern Anal. Mach. Intell. 12, 629–639 (1990)

    Article  Google Scholar 

  23. Rother, C., Kolmogorov, V., Blake, A.: “GrabCut”: interactive foreground extraction using iterated graph cuts. In: Proceedings of the SIGGRAPH 2004, New York, NY, USA, pp. 309–314, August 2004

    Google Scholar 

  24. Santner, J., Pock, T., Bischof, H.: Interactive multi-label segmentation. In: Kimmel, R., Klette, R., Sugimoto, A. (eds.) ACCV 2010, Part I. LNCS, vol. 6492, pp. 397–410. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  25. Santner, J., Unger, M., Pock, T., Leistner, C., Saffari, A., Bischof, H.: Interactive texture segmentation using random forests and total variation. In: Proceedings of the 2009 British Machine Vision Conference, London, UK, pp. 66.1–66.12 (2009)

    Google Scholar 

  26. Strekalovskiy, E., Cremers, D.: Generalized ordering constraints for multilabel optimization. In: Proceedings of the 2011 IEEE International Conference on Computer Vision, Barcelona, Spain, pp. 2619–2626 (2011)

    Google Scholar 

  27. Strekalovskiy, E., Nieuwenhuis, C., Cremers, D.: Nonmetric priors for continuous multilabel optimization. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012, Part VII. LNCS, vol. 7578, pp. 208–221. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  28. Unger, M., Pock, T., Trobin, W., Cremers, D., Bischof, H.: TVSeg - interactive total variation based image segmentation. In: Proceedings of the 2008 British Machine Vision Conference, Leeds, UK, pp. 40.1–40.10 (2008)

    Google Scholar 

  29. Werlberger, M., Unger, M., Pock, T., Bischof, H.: Efficient minimization of the non-local potts model. In: Bruckstein, A.M., ter Haar Romeny, B.M., Bronstein, A.M., Bronstein, M.M. (eds.) SSVM 2011. LNCS, vol. 6667, pp. 314–325. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

Download references

Acknowledgements

This work was partially funded by the European Union’s FP7 under the project Computational Horizons in Cancer (grant agreement No. 600841).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sabine Müller .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this paper

Cite this paper

Müller, S., Ochs, P., Weickert, J., Graf, N. (2016). Robust Interactive Multi-label Segmentation with an Advanced Edge Detector. In: Rosenhahn, B., Andres, B. (eds) Pattern Recognition. GCPR 2016. Lecture Notes in Computer Science(), vol 9796. Springer, Cham. https://doi.org/10.1007/978-3-319-45886-1_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-45886-1_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-45885-4

  • Online ISBN: 978-3-319-45886-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics