Abstract
Recent advances on convex relaxation methods allow for a flexible formulation of many interactive multi-label segmentation methods. The building blocks are a likelihood specified for each pixel and each label, and a penalty for the boundary length of each segment. While many sophisticated likelihood estimations based on various statistical measures have been investigated, the boundary length is usually measured in a metric induced by simple image gradients. We show that complementing these methods with recent advances of edge detectors yields an immense quality improvement. A remarkable feature of the proposed method is the ability to correct some erroneous labels, when computer generated initial labels are considered. This allows us to improve state-of-the-art methods for motion segmentation in videos by 5–10 % with respect to the F-measure (Dice score).
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
Instead of integrating over the set of scribbles they sum over all scribbled pixels.
References
Arbelaez, P., Maire, M., Fowlkes, C., Malik, J.: Contour detection and hierarchical image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 33(5), 898–916 (2011)
Bauer, S., Porz, N., Meier, R., Pica, A., Slotboom, J., Wiest, R., Reyes, M.: Interactive segmentation of MR images from brain tumor patients. In: Proceedings of the 11th International Symposium on Biomedical Imaging, Beijing, China, pp. 862–865 (2014)
Bergbauer, J., Nieuwenhuis, C., Souiai, M., Cremers, D.: Proximity priors for variational semantic segmentation and recognition. In: ICCV Workshop on Graphical Models for Scene Understanding, Sydney, Australia, pp. 15–21 (2013)
Boykov, Y.Y., Jolly, M.P.: Interactive graph cuts for optimal boundary & region segmentation of objects in N-D images. In: Proceedings of the 2001 IEEE International Conference on Computer Vision, Vancouver, Canada, pp. 105–112 (2001)
Brox, T., Malik, J.: Object segmentation by long term analysis of point trajectories. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part V. LNCS, vol. 6315, pp. 282–295. Springer, Heidelberg (2010)
Canny, J.: A computational approach to edge detection. IEEE Trans. Pattern Anal. Mach. Intell. 8, 679–698 (1986)
Chambolle, A., Cremers, D., Pock, T.: A convex approach to minimal partitions. SIAM J. Appl. Math. 5(4), 1113–1158 (2012)
Chambolle, A., Pock, T.: A first-order primal-dual algorithm for convex problems with applications to imaging. J. Math. Imaging Vision 40(1), 120–145 (2011)
Chan, T.F., Vese, L.A.: Active contours without edges. IEEE Trans. Image Process. 10(2), 266–277 (2001)
Diebold, J., Demmel, N., Hazırbaş, C., Moeller, M., Cremers, D.: Interactive multi-label segmentation of RGB-D images. In: Aujol, J.-F., Nikolova, M., Papadakis, N. (eds.) SSVM 2015. LNCS, vol. 9087, pp. 294–306. Springer, Heidelberg (2015)
Dollár, P., Zitnick, C.L.: Structured forests for fast edge detection. In: Proceedings of the 2013 IEEE International Conference on Computer Vision, Washington, DC, USA, pp. 1841–1848 (2013)
Dollár, P., Zitnick, C.L.: Fast edge detection using structured forests. IEEE Trans. Pattern Anal. Mach. Intell. 37(8), 1558–1570 (2015)
Felzenszwalb, P.F., Huttenlocher, D.P.: Efficient graph-based image segmentation. Int. J. Comput. Vision 59(2), 167–181 (2004)
Feng, C., Zhao, D., Huang, M.: Segmentation of stroke lesions in multi-spectral MR images using bias correction embedded FCM and three phase level set. In: MICCAI Ischemic Stroke Lesion Segmentation, p. 3 (2015)
Geman, S., Geman, D.: Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images. IEEE Trans. Pattern Anal. Mach. Intell. 6, 721–741 (1984)
Keuper, M., Andres, B., Brox, T.: Motion trajectory segmentation via minimum cost multicuts. In: Proceedings of the 2015 IEEE International Conference on Computer Vision, Santiago, Chile, pp. 3271–3279 (2015)
Mumford, D., Shah, J.: Optimal approximation of piecewise smooth functions and associated variational problems. Commun. Pure Appl. Math. 42, 577–685 (1989)
Nieuwenhuis, C., Cremers, D.: Spatially varying color distributions for interactive multilabel segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 35(5), 1234–1247 (2013)
Nieuwenhuis, C., Hawe, S., Kleinsteuber, M., Cremers, D.: Co-sparse textural similarity for interactive segmentation. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014, Part VI. LNCS, vol. 8694, pp. 285–301. Springer, Heidelberg (2014)
Ochs, P., Brox, T.: Object segmentation in video: a hierarchical variational approach for turning point trajectories into dense regions. In: Proceedings of the 2011 IEEE International Conference on Computer Vision, Barcelona, Spain, pp. 1583–1590 (2011)
Ochs, P., Malik, J., Brox, T.: Segmentation of moving objects by long term video analysis. IEEE Trans. Pattern Anal. Mach. Intell. 36(6), 1187–1200 (2014)
Perona, P., Malik, J.: Scale space and edge detection using anisotropic diffusion. IEEE Trans. Pattern Anal. Mach. Intell. 12, 629–639 (1990)
Rother, C., Kolmogorov, V., Blake, A.: “GrabCut”: interactive foreground extraction using iterated graph cuts. In: Proceedings of the SIGGRAPH 2004, New York, NY, USA, pp. 309–314, August 2004
Santner, J., Pock, T., Bischof, H.: Interactive multi-label segmentation. In: Kimmel, R., Klette, R., Sugimoto, A. (eds.) ACCV 2010, Part I. LNCS, vol. 6492, pp. 397–410. Springer, Heidelberg (2011)
Santner, J., Unger, M., Pock, T., Leistner, C., Saffari, A., Bischof, H.: Interactive texture segmentation using random forests and total variation. In: Proceedings of the 2009 British Machine Vision Conference, London, UK, pp. 66.1–66.12 (2009)
Strekalovskiy, E., Cremers, D.: Generalized ordering constraints for multilabel optimization. In: Proceedings of the 2011 IEEE International Conference on Computer Vision, Barcelona, Spain, pp. 2619–2626 (2011)
Strekalovskiy, E., Nieuwenhuis, C., Cremers, D.: Nonmetric priors for continuous multilabel optimization. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012, Part VII. LNCS, vol. 7578, pp. 208–221. Springer, Heidelberg (2012)
Unger, M., Pock, T., Trobin, W., Cremers, D., Bischof, H.: TVSeg - interactive total variation based image segmentation. In: Proceedings of the 2008 British Machine Vision Conference, Leeds, UK, pp. 40.1–40.10 (2008)
Werlberger, M., Unger, M., Pock, T., Bischof, H.: Efficient minimization of the non-local potts model. In: Bruckstein, A.M., ter Haar Romeny, B.M., Bronstein, A.M., Bronstein, M.M. (eds.) SSVM 2011. LNCS, vol. 6667, pp. 314–325. Springer, Heidelberg (2012)
Acknowledgements
This work was partially funded by the European Union’s FP7 under the project Computational Horizons in Cancer (grant agreement No. 600841).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer International Publishing AG
About this paper
Cite this paper
Müller, S., Ochs, P., Weickert, J., Graf, N. (2016). Robust Interactive Multi-label Segmentation with an Advanced Edge Detector. In: Rosenhahn, B., Andres, B. (eds) Pattern Recognition. GCPR 2016. Lecture Notes in Computer Science(), vol 9796. Springer, Cham. https://doi.org/10.1007/978-3-319-45886-1_10
Download citation
DOI: https://doi.org/10.1007/978-3-319-45886-1_10
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-45885-4
Online ISBN: 978-3-319-45886-1
eBook Packages: Computer ScienceComputer Science (R0)