Abstract
Direct Anonymous Attestation (DAA) is a cryptographic protocol for privacy-protecting authentication. It is standardized in the TPM standard and implemented in millions of chips. A variant of DAA is also used in Intel’s SGX. Recently, Camenisch et al. (PKC 2016) demonstrated that existing security models for DAA do not correctly capture all security requirements, and showed a number of flaws in existing schemes based on the LRSW assumption. In this work, we identify flaws in security proofs of a number of qSDH-based DAA schemes and point out that none of the proposed schemes can be proven secure in the recent model by Camenisch et al. (PKC 2016). We therefore present a new, provably secure DAA scheme that is based on the qSDH assumption. The new scheme is as efficient as the most efficient existing DAA scheme, with support for DAA extensions to signature-based revocation and attributes. We rigorously prove the scheme secure in the model of Camenisch et al., which we modify to support the extensions. As a side-result of independent interest, we prove that the BBS+ signature scheme is secure in the type-3 pairing setting, allowing for our scheme to be used with the most efficient pairing-friendly curves.
This work has been supported by the ERC under Grant PERCY #321310.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Au, M.H., Susilo, W., Mu, Y.: Constant-size dynamic k-TAA. In: Prisco, R., Yung, M. (eds.) SCN 2006. LNCS, vol. 4116, pp. 111–125. Springer, Heidelberg (2006)
Barreto, P.S.L.M., Naehrig, M.: Pairing-friendly elliptic curves of prime order. In: Preneel, B., Tavares, S. (eds.) SAC 2005. LNCS, vol. 3897, pp. 319–331. Springer, Heidelberg (2006)
Bellare, M., Rogaway, P.: Random oracles are practical: a paradigm for designing efficient protocols. In: CCS 1993 (1993)
Bernhard, D., Fuchsbauer, G., Ghadafi, E., Smart, N.P., Warinschi, B.: Anonymous attestation with user-controlled linkability. Int. J. Inf. Secur. 12(3), 219–249 (2013)
Bleichenbacher, D.: Chosen ciphertext attacks against protocols based on the RSA encryption standard PKCS #1. In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS, vol. 1462, pp. 1–12. Springer, Heidelberg (1998)
Boneh, D., Boyen, X.: Short signatures without random oracles. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 56–73. Springer, Heidelberg (2004)
Boneh, D., Boyen, X.: Short signatures without random oracles and the SDH assumption in bilinear groups. J. Cryptology 21(2), 149–177 (2007)
Boneh, D., Boyen, X., Shacham, H.: Short group signatures. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 41–55. Springer, Heidelberg (2004)
Brickell, E., Camenisch, J., Chen, L.: Direct anonymous attestation. In: CCS 2004 (2004)
Brickell, E., Chen, L., Li, J.: A new direct anonymous attestation scheme from bilinear maps. In: Lipp, P., Sadeghi, A.-R., Koch, K.-M. (eds.) Trust 2008. LNCS, vol. 4968, pp. 166–178. Springer, Heidelberg (2008)
Brickell, E., Chen, L., Li, J.: Simplified security notions of direct anonymous attestation and a concrete scheme from pairings. Int. J. Inf. Secur. 8(5), 315–330 (2009)
Brickell, E., Li, J.: Enhanced privacy ID: a direct anonymous attestation scheme with enhanced revocation capabilities. In: WPES 2007 (2007)
Brickell, E., Li, J.: A pairing-based DAA scheme further reducing TPM resources. Cryptology ePrint Archive, Report 2010/067 (2010)
Brickell, E., Li, J.: Enhanced privacy ID from bilinear pairing for hardware authentication and attestation. Int. J. Inf. Priv. Secur. Integrity 1(1), 3–33 (2011)
Camenisch, J., Drijvers, M., Lehmann, A.: Universally composable direct anonymous attestation. In: Cheng, C.-M., Chung, K.-M., Persiano, G., Yang, B.-Y. (eds.) PKC 2016. LNCS, vol. 9615, pp. 234–264. Springer, Heidelberg (2016). doi:10.1007/978-3-662-49387-8_10
Camenisch, J., Drijvers, M., Lehmann, A.: Anonymous Attestation Using the Strong Diffie Hellman Assumption Revisited. Cryptology ePrint Archive, Report 2016/663 (2016)
Camenisch, J., Kiayias, A., Yung, M.: On the portability of generalized schnorr proofs. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 425–442. Springer, Heidelberg (2009)
Camenisch, J.L., Shoup, V.: Practical verifiable encryption and decryption of discrete logarithms. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 126–144. Springer, Heidelberg (2003)
Camenisch, J.L., Stadler, M.A.: Efficient group signature schemes for large groups. In: Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 410–424. Springer, Heidelberg (1997)
Canetti, R.: Universally composable signature, certification, and authentication. In: Computer Security Foundations Workshop (2004)
Canetti, R.: Universally composable security: a new paradigm for cryptographic protocols. Cryptology ePrint Archive, Report 2000/067 (2000)
Chen, L.: A DAA scheme requiring less TPM resources. In: Bao, F., Yung, M., Lin, D., Jing, J. (eds.) Inscrypt 2009. LNCS, vol. 6151, pp. 350–365. Springer, Heidelberg (2010)
Chen, L., Morrissey, P., Smart, N.P.: Pairings in trusted computing. In: Galbraith, S.D., Paterson, K.G. (eds.) Pairing 2008. LNCS, vol. 5209, pp. 1–17. Springer, Heidelberg (2008)
Chen, L., Page, D., Smart, N.P.: On the design and implementation of an efficient DAA scheme. In: Gollmann, D., Lanet, J.-L., Iguchi-Cartigny, J. (eds.) CARDIS 2010. LNCS, vol. 6035, pp. 223–237. Springer, Heidelberg (2010)
Chen, L., Urian, R.: DAA-A: direct anonymous attestation with attributes. In: Conti, M., Schunter, M., Askoxylakis, I. (eds.) TRUST 2015. LNCS, vol. 9229, pp. 228–245. Springer, Heidelberg (2015)
Chen, X., Feng, D.: Direct anonymous attestation for next generation TPM. J. Comput. 3(12), 43–50 (2008)
Costan, V., Devadas, S.: Intel SGX explained. Cryptology ePrint Archive, Report 2016/086 (2016)
Fiat, A., Shamir, A.: How to prove yourself: practical solutions to identification and signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp. 186–194. Springer, Heidelberg (1987)
Galbraith, S.D., Paterson, K.G., Smart, N.P.: Pairings for cryptographers. Discrete Appl. Math. 156(16), 3113–3121 (2008)
International Organization for Standardization. ISO/IEC 20008: Information technology - Security techniques - Anonymous digital signatures (2013)
International Organization for Standardization. ISO/IEC 11889: Information technology - Trusted platform module library (2015)
Lysyanskaya, A., Rivest, R.L., Sahai, A., Wolf, S.: Pseudonym systems (Extended Abstract). In: Heys, H.M., Adams, C.M. (eds.) SAC 1999. LNCS, vol. 1758, pp. 184–199. Springer, Heidelberg (2000)
Paillier, P.: Public-key cryptosystems based on composite degree residuosity classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–238. Springer, Heidelberg (1999)
Trusted Computing Group: TPM main specification version 1.2 (2004)
Trusted Computing Group. TPM library specification, family “2.0” (2014)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer International Publishing Switzerland
About this paper
Cite this paper
Camenisch, J., Drijvers, M., Lehmann, A. (2016). Anonymous Attestation Using the Strong Diffie Hellman Assumption Revisited. In: Franz, M., Papadimitratos, P. (eds) Trust and Trustworthy Computing. Trust 2016. Lecture Notes in Computer Science(), vol 9824. Springer, Cham. https://doi.org/10.1007/978-3-319-45572-3_1
Download citation
DOI: https://doi.org/10.1007/978-3-319-45572-3_1
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-45571-6
Online ISBN: 978-3-319-45572-3
eBook Packages: Computer ScienceComputer Science (R0)