[go: up one dir, main page]

Skip to main content

Anonymous Attestation Using the Strong Diffie Hellman Assumption Revisited

  • Conference paper
  • First Online:
Trust and Trustworthy Computing (Trust 2016)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 9824))

Included in the following conference series:

Abstract

Direct Anonymous Attestation (DAA) is a cryptographic protocol for privacy-protecting authentication. It is standardized in the TPM standard and implemented in millions of chips. A variant of DAA is also used in Intel’s SGX. Recently, Camenisch et al. (PKC 2016) demonstrated that existing security models for DAA do not correctly capture all security requirements, and showed a number of flaws in existing schemes based on the LRSW assumption. In this work, we identify flaws in security proofs of a number of qSDH-based DAA schemes and point out that none of the proposed schemes can be proven secure in the recent model by Camenisch et al. (PKC 2016). We therefore present a new, provably secure DAA scheme that is based on the qSDH assumption. The new scheme is as efficient as the most efficient existing DAA scheme, with support for DAA extensions to signature-based revocation and attributes. We rigorously prove the scheme secure in the model of Camenisch et al., which we modify to support the extensions. As a side-result of independent interest, we prove that the BBS+ signature scheme is secure in the type-3 pairing setting, allowing for our scheme to be used with the most efficient pairing-friendly curves.

This work has been supported by the ERC under Grant PERCY #321310.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    http://www.trustedcomputinggroup.org/solutions/authentication.

References

  1. Au, M.H., Susilo, W., Mu, Y.: Constant-size dynamic k-TAA. In: Prisco, R., Yung, M. (eds.) SCN 2006. LNCS, vol. 4116, pp. 111–125. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  2. Barreto, P.S.L.M., Naehrig, M.: Pairing-friendly elliptic curves of prime order. In: Preneel, B., Tavares, S. (eds.) SAC 2005. LNCS, vol. 3897, pp. 319–331. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  3. Bellare, M., Rogaway, P.: Random oracles are practical: a paradigm for designing efficient protocols. In: CCS 1993 (1993)

    Google Scholar 

  4. Bernhard, D., Fuchsbauer, G., Ghadafi, E., Smart, N.P., Warinschi, B.: Anonymous attestation with user-controlled linkability. Int. J. Inf. Secur. 12(3), 219–249 (2013)

    Article  Google Scholar 

  5. Bleichenbacher, D.: Chosen ciphertext attacks against protocols based on the RSA encryption standard PKCS #1. In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS, vol. 1462, pp. 1–12. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  6. Boneh, D., Boyen, X.: Short signatures without random oracles. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 56–73. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  7. Boneh, D., Boyen, X.: Short signatures without random oracles and the SDH assumption in bilinear groups. J. Cryptology 21(2), 149–177 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  8. Boneh, D., Boyen, X., Shacham, H.: Short group signatures. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 41–55. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  9. Brickell, E., Camenisch, J., Chen, L.: Direct anonymous attestation. In: CCS 2004 (2004)

    Google Scholar 

  10. Brickell, E., Chen, L., Li, J.: A new direct anonymous attestation scheme from bilinear maps. In: Lipp, P., Sadeghi, A.-R., Koch, K.-M. (eds.) Trust 2008. LNCS, vol. 4968, pp. 166–178. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  11. Brickell, E., Chen, L., Li, J.: Simplified security notions of direct anonymous attestation and a concrete scheme from pairings. Int. J. Inf. Secur. 8(5), 315–330 (2009)

    Article  Google Scholar 

  12. Brickell, E., Li, J.: Enhanced privacy ID: a direct anonymous attestation scheme with enhanced revocation capabilities. In: WPES 2007 (2007)

    Google Scholar 

  13. Brickell, E., Li, J.: A pairing-based DAA scheme further reducing TPM resources. Cryptology ePrint Archive, Report 2010/067 (2010)

    Google Scholar 

  14. Brickell, E., Li, J.: Enhanced privacy ID from bilinear pairing for hardware authentication and attestation. Int. J. Inf. Priv. Secur. Integrity 1(1), 3–33 (2011)

    Google Scholar 

  15. Camenisch, J., Drijvers, M., Lehmann, A.: Universally composable direct anonymous attestation. In: Cheng, C.-M., Chung, K.-M., Persiano, G., Yang, B.-Y. (eds.) PKC 2016. LNCS, vol. 9615, pp. 234–264. Springer, Heidelberg (2016). doi:10.1007/978-3-662-49387-8_10

    Chapter  Google Scholar 

  16. Camenisch, J., Drijvers, M., Lehmann, A.: Anonymous Attestation Using the Strong Diffie Hellman Assumption Revisited. Cryptology ePrint Archive, Report 2016/663 (2016)

    Google Scholar 

  17. Camenisch, J., Kiayias, A., Yung, M.: On the portability of generalized schnorr proofs. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 425–442. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  18. Camenisch, J.L., Shoup, V.: Practical verifiable encryption and decryption of discrete logarithms. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 126–144. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  19. Camenisch, J.L., Stadler, M.A.: Efficient group signature schemes for large groups. In: Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 410–424. Springer, Heidelberg (1997)

    Chapter  Google Scholar 

  20. Canetti, R.: Universally composable signature, certification, and authentication. In: Computer Security Foundations Workshop (2004)

    Google Scholar 

  21. Canetti, R.: Universally composable security: a new paradigm for cryptographic protocols. Cryptology ePrint Archive, Report 2000/067 (2000)

    Google Scholar 

  22. Chen, L.: A DAA scheme requiring less TPM resources. In: Bao, F., Yung, M., Lin, D., Jing, J. (eds.) Inscrypt 2009. LNCS, vol. 6151, pp. 350–365. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  23. Chen, L., Morrissey, P., Smart, N.P.: Pairings in trusted computing. In: Galbraith, S.D., Paterson, K.G. (eds.) Pairing 2008. LNCS, vol. 5209, pp. 1–17. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  24. Chen, L., Page, D., Smart, N.P.: On the design and implementation of an efficient DAA scheme. In: Gollmann, D., Lanet, J.-L., Iguchi-Cartigny, J. (eds.) CARDIS 2010. LNCS, vol. 6035, pp. 223–237. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  25. Chen, L., Urian, R.: DAA-A: direct anonymous attestation with attributes. In: Conti, M., Schunter, M., Askoxylakis, I. (eds.) TRUST 2015. LNCS, vol. 9229, pp. 228–245. Springer, Heidelberg (2015)

    Chapter  Google Scholar 

  26. Chen, X., Feng, D.: Direct anonymous attestation for next generation TPM. J. Comput. 3(12), 43–50 (2008)

    MathSciNet  Google Scholar 

  27. Costan, V., Devadas, S.: Intel SGX explained. Cryptology ePrint Archive, Report 2016/086 (2016)

    Google Scholar 

  28. Fiat, A., Shamir, A.: How to prove yourself: practical solutions to identification and signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp. 186–194. Springer, Heidelberg (1987)

    Chapter  Google Scholar 

  29. Galbraith, S.D., Paterson, K.G., Smart, N.P.: Pairings for cryptographers. Discrete Appl. Math. 156(16), 3113–3121 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  30. International Organization for Standardization. ISO/IEC 20008: Information technology - Security techniques - Anonymous digital signatures (2013)

    Google Scholar 

  31. International Organization for Standardization. ISO/IEC 11889: Information technology - Trusted platform module library (2015)

    Google Scholar 

  32. Lysyanskaya, A., Rivest, R.L., Sahai, A., Wolf, S.: Pseudonym systems (Extended Abstract). In: Heys, H.M., Adams, C.M. (eds.) SAC 1999. LNCS, vol. 1758, pp. 184–199. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  33. Paillier, P.: Public-key cryptosystems based on composite degree residuosity classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–238. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  34. Trusted Computing Group: TPM main specification version 1.2 (2004)

    Google Scholar 

  35. Trusted Computing Group. TPM library specification, family “2.0” (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manu Drijvers .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Camenisch, J., Drijvers, M., Lehmann, A. (2016). Anonymous Attestation Using the Strong Diffie Hellman Assumption Revisited. In: Franz, M., Papadimitratos, P. (eds) Trust and Trustworthy Computing. Trust 2016. Lecture Notes in Computer Science(), vol 9824. Springer, Cham. https://doi.org/10.1007/978-3-319-45572-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-45572-3_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-45571-6

  • Online ISBN: 978-3-319-45572-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics