[go: up one dir, main page]

Skip to main content

Smooth Stroke Width Transform for Text Detection

  • Conference paper
  • First Online:
Artificial Intelligence: Methodology, Systems, and Applications (AIMSA 2016)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 9883))

Abstract

The stroke width transform (SWT) is a generic operation for the task of detecting texts from natural images because the characters intrinsically have the elongated shape of nearly uniform width. The edge pairing technique was recently developed by Epshtein et al. and is popularly used due to its simplicity and effectiveness. However since the natural images are noisy and sensitive to variations, high degree of artifacts arises and it hinders subsequent processing of the text detection. This paper reformulates the SWT problem in a new way that searches for an optimal solution in 3-D space. We present an effective search algorithm called the aggregation approach, borrowed from the depth image reconstruction domain. The experiments showed that the algorithm produced a smooth SWT map which is better for subsequent processes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  1. Koo, H.I., Kim, D.H.: Scene text detection via connected component clustering and non-text filtering. IEEE Trans. Image Process. 22(6), 2296–2305 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  2. Yin, X.-C., Yin, X., Huang, K., Hao, H.-W.: Robust text detection in natural scene images. IEEE Trans. Pattern Recogn. Mach. Intell. 36(5), 970–983 (2014)

    Article  Google Scholar 

  3. Epshtein, B., Ofek, E., Wexler, Y., Detecting text in natural scenes with stroke width transform. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 2963–2970 (2010)

    Google Scholar 

  4. Lucas, B.D., Kanade, T.: An iterative image registration technique with an application to stereo vision. In: International Joint Conference on Artificial Intelligence, pp. 674–679 (1981)

    Google Scholar 

  5. Scharstein, D., Szeliski, R.: A taxonomy and evaluation of dense two-frame stereo correspondence algorithms. Int. J. Comput. Vis. 47(1), 7–42 (2002)

    Article  MATH  Google Scholar 

  6. Zhang, J., Kasturi, R.: Character energy and link energy-based text extraction in scene images. In: Kimmel, R., Klette, R., Sugimoto, A. (eds.) ACCV 2010, Part II. LNCS, vol. 6493, pp. 308–320. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  7. Yi, C., Tian, Y.: Text string detection from natural scenes by structure-based partition and grouping. IEEE Trans. Image Process. 20(9), 2594–2605 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  8. Mosleh, A., et al.: Image text detection using a Bandlet-based edge detector and stroke width transform. In: British Machine Vision Conference (2012)

    Google Scholar 

  9. Meng, Q., Song, Y., Zhang, Y., Liu, Y.: Text detection in natural scene with edge analysis. In: International Conference on Image Processing, pp. 4151–4155 (2013)

    Google Scholar 

  10. Huang, W., Lin, Z., Yang, J., Wang, J.: Text localization in natural images using stroke feature transform and text covariance descriptors. In: International Conference on Computer Vision, pp. 1241–1248 (2013)

    Google Scholar 

  11. Karthikeyan, S.: Jagadeesh, V., Manjunath, B.S.: Learning bottom-up text attention maps for text detection using stroke width transform. In: International Conference on Image Processing, pp. 3312–3316 (2013)

    Google Scholar 

  12. Liu, S., Zhou, Y., Zhang, Y., Wang, Y., Lin, W.: Text detection in natural scene images with stroke width clustering and superpixel. In: Ooi, W.T., Snoek, C.G., Tan, H.K., Ho, C.-K., Huet, B., Ngo, C.-W. (eds.) PCM 2014. LNCS, vol. 8879, pp. 123–132. Springer, Heidelberg (2014)

    Google Scholar 

  13. Dong, W., Lian, Z., Tang, Y., Xiao, J.: Text detection in natural images using localized stroke width transform. In: He, X., Luo, S., Tao, D., Xu, C., Yang, J., Hasan, M.A. (eds.) MMM 2015, Part I. LNCS, vol. 8935, pp. 49–58. Springer, Heidelberg (2015)

    Google Scholar 

  14. Yao, C., Bai, X., Liu, W., Ma, Y., Tu, Z.: Detecting texts of arbitrary orientations in natural images. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 1083–1090 (2012)

    Google Scholar 

  15. Bhavadharani, R., Thilagavathy, A.: An efficient gaze-text-detection from images using stroke width transform. Int. J. Adv. Eng. Technol. Manag. Appl. Sci. 1(6), 1–8 (2014)

    Google Scholar 

  16. Gong, M., Yang, R., Wang, L., Gong, M.: A performance study on different cost aggregation approaches used in real-time stereo matching. Int. J. Comput. Vis. 75(2), 283–296 (2007)

    Article  Google Scholar 

  17. Karatzas, D., et al.: ICDAR 2013 robust reading competition. In: International Conference on Document Analysis and Recognition, pp. 1484–1493 (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Il-Seok Oh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Oh, IS., Lee, JS. (2016). Smooth Stroke Width Transform for Text Detection. In: Dichev, C., Agre, G. (eds) Artificial Intelligence: Methodology, Systems, and Applications. AIMSA 2016. Lecture Notes in Computer Science(), vol 9883. Springer, Cham. https://doi.org/10.1007/978-3-319-44748-3_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-44748-3_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-44747-6

  • Online ISBN: 978-3-319-44748-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics