[go: up one dir, main page]

Skip to main content

Part of the book series: Springer Handbooks ((SHB))

Zusammenfassung

Since its introduction in 1997, precise point positioning (GlossaryTerm

PPP

) offers an attractive alternative to differential global navigation satellite system (GlossaryTerm

GNSS

) positioning. The PPP approach uses undifferenced, dual-frequency, pseudorange and carrier-phase observations along with precise satellite orbit and clock products, for standalone static or kinematic geodetic point positioning with centimeter precision. This chapter introduces the PPP concept and specifies the required models needed to correct for systematic effects causing centimeter-level variations in the satellite-to-user range. For completeness, models and methods for processing single-frequency GNSS data are presented and specific aspects of GlossaryTerm

GLONASS

(Global’naya Navigatsionnaya Sputnikova Sistema) and new GNSSs are also described. Furthermore, recent developments in fixing undifferenced carrier-phase ambiguities, which can considerably shorten or nearly eliminate the initial delay for PPP convergence, are highlighted. Existing web applications and real-time corrections services enabling post-mission and real-time PPP are presented. Finally, typical PPP precision and accuracy estimates are discussed, including the solution of station tropospheric zenith path delays and receiver clocks, with millimeter and nanosecond precision respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

AC:

analysis center

AltBOC:

alternative BOC

ANTEX:

antenna exchange (format)

CODE:

Center for Orbit Determination in Europe

CORS:

continuously operating reference station

DCB:

differential code bias

DD:

double-difference

ECMWF:

European Centre for Medium-Range Weather Forecasts

ESA:

European Space Agency

FDMA:

frequency division multiple access

FOC:

full operational capability

GFZ:

Deutsches GeoForschungsZentrum

GIM:

global ionospheric map

GLONASS:

Global’naya Navigatsionnaya Sputnikova Sistema (Russian Global Navigation Satellite System)

GNSS:

global navigation satellite system

GPS:

Global Positioning System

GPT:

global pressure and temperature (model)

IERS:

International Earth Rotation and Reference Systems Service

IGS:

International GNSS Service

IONEX:

ionosphere exchange (format)

IOV:

in-orbit validation

IRNSS:

Indian Regional Navigation Satellite System

ISC:

intersignal correction

ITRF:

International Terrestrial Reference Frame

JPL:

Jet Propulsion Laboratory

LEO:

low Earth orbit

NASA:

National Aeronautics and Space Administration

NWM:

numerical weather model

PCO:

phase center offset

PCV:

phase center variation

PPP:

precise point positioning

QZSS:

Quasi-Zenith Satellite System

RHCP:

right-hand circular polarized

RINEX:

receiver independent exchange (format)

RMS:

root mean square

RTCM:

Radio Technical Commission for Maritime Services

RTK:

real-time kinematic

SD:

single-difference

SP3:

Standard Product 3 (format)

STEC:

slant total electron content

TEC:

total electron content

TGD:

timing group delay

UNB:

University of New Brunswick

VTEC:

vertical total electron content

ZTD:

zenith troposphere delay

References

  1. J.D. Bossler, C.C. Goad, P.L. Bender: Using the global positioning system (GPS) for geodetic positioning, Bull. Geod. 54, 101–114 (1980)

    Article  Google Scholar 

  2. J.F. Zumberge, M.B. Heflin, D.C. Jefferson, M.M. Watkins, F.H. Webb: Precise point positioning for the efficient and robust analysis of GPS data from large networks, J. Geophys. Res. 102, 5005–5017 (1997)

    Article  Google Scholar 

  3. S. Bisnath, Y. Gao: Current state of precise point positioning and future prospects and limitations. In: Observing Our Changing Earth, ed. by M.G. Sideris (Springer, Berlin 2009) pp. 615–623

    Google Scholar 

  4. S. Banville, R. Langley: Mitigating the impact of ionospheric cycle slips in GNSS observations, J. Geodesy 87, 179–193 (2013)

    Article  Google Scholar 

  5. R. Schmid, P. Steigenberger, G. Gendt, M. Gendt, M. Rothacher: Generation of a consistent absolute phase center correction model for GPS receiver and satellite antennas, J. Geodesy 81(12), 781–798 (2007)

    Article  Google Scholar 

  6. O. Montenbruck, R. Schmid, F. Mercier, P. Steigenberger, C. Noll, R. Fatkulin, S. Kogure, S. Ganeshan: GNSS satellite geometry and attitude models, Adv. Space Res. 56(6), 1015–1029 (2015)

    Article  Google Scholar 

  7. G.P.S. Directorate: Navstar GPS Space Segment / Navigation User Segment Interfaces, Interface Specification, IS-GPS-200H, 24 Sep. 2013 (Global Positioning Systems Directorate, Los Angeles Air Force Base, El Segundo 2013)

    Google Scholar 

  8. J. Kouba: Improved relativistic transformations in GPS, GPS Solutions 8(3), 170–180 (2004)

    Article  Google Scholar 

  9. S. Schaer: Overview of GNSS biases, Proc. workshop on GNSS biases, Univ., Bern (2012), ( 2012)

    Google Scholar 

  10. O. Montenbruck, A. Hauschild, P. Steigenberger: Differential code bias estimation using multi-GNSS observations and global ionosphere maps, Navigation 61(3), 191–201 (2014)

    Article  Google Scholar 

  11. P.J.G. Teunissen, A. Khodabandeh: Review and principles of PPP-RTK methods, J. Geodesy 89(3), 217–240 (2015)

    Article  Google Scholar 

  12. O. Bock, E. Doerflinger: Atmospheric modeling in GPS data analysis for high accuracy positioning, Phys. Chem. Earth Part A 26(6), 373–383 (2001)

    Article  Google Scholar 

  13. G. Petit, B. Luzum: IERS Conventions (2010), IERS Technical Note No. 36 (Verlag des Bundesamts für Kartographie und Geodäsie, Frankfurt 2010)

    Google Scholar 

  14. J. Boehm, A. Niell, P. Tregonning, H. Schuh: Global mapping function (GMF): A new empirical mapping function based on numerical weather model data, Geophys. Res. Lett. 33(L07304), 1–4 (2006)

    Google Scholar 

  15. J. Boehm, P. Heinkelmann, H. Schuh: Short note: A global model of pressure and temperature for geodetic applications, J. Geodesy 81(10), 679–683 (2007)

    Article  Google Scholar 

  16. M. Hernández-Pajares, J.M. Juan, J. Sanz, R. Orus, A. Garcia-Rigo, J. Feltens, A. Komjathy, S.C. Schaer, A. Krankowski: The IGS VTEC maps: A reliable source of ionospheric information since 1998, J. Geodesy 83(3/4), 263–275 (2009)

    Article  Google Scholar 

  17. M.M. Hoque, N. Jakowski: Higher order ionospheric effects in precise GNSS positioning, J. Geodesy 81(4), 259–268 (2007)

    Article  Google Scholar 

  18. Z. Altamimi, L.T. Métivier, X. Collilieux: ITRF2008 plate motion model, J. Geophys. Res. 117(B07402), 1–14 (2012)

    Google Scholar 

  19. P.M. Mathews, V. Dehant, J.M. Gipson: Tidal station displacements, J. Geophys. Res. 102(B9), 20469–20477 (1997)

    Article  Google Scholar 

  20. S.A. Melachroinos, R. Biancale, M. Llubes, F. Perosanz, F. Lyard, M. Vergnolle, M.-N. Bouin, F. Masson, J. Nicolas, L. Morel, S. Durand: Ocean tide loading (OTL) displacements from global and local grids: Comparisons to GPS estimates over the shelf of Brittany, France, J. Geodesy 82(6), 357–371 (2008)

    Article  Google Scholar 

  21. M.A. King, Z. Altamimi, J. Boehm, M. Bos, R. Dach, P. Elosegui, F. Fund, M. Hernández-Pajares, D. Lavallee, P.J. Mendes Cerveira, N. Penna, R.E.M. Riva, P. Steigenberger, T. van Dam, L. Vittuari, S. Williams, P. Willis: Improved constraints on models of glacial isostatic adjustment: A review of the contribution of ground-based geodetic observations, Surveys Geophys. 31(5), 465–507 (2010)

    Article  Google Scholar 

  22. T. van Dam, X. Collilieux, J. Wuite, Z. Altamimi, J. Ray: Nontidal ocean loading: Amplitudes and potential effects in GPS height time series, J. Geodesy 86(11), 1043–1057 (2012)

    Article  Google Scholar 

  23. L. Petrov, J.-P. Boy: Study of the atmospheric pressure loading signal in very long baseline interferometry observations, J. Geophys. Res. 109(B03405), 1–14 (2004)

    Google Scholar 

  24. B. Görres, J. Campbell, M. Becker, M. Siemes: Absolute calibration of GPS antennas: Laboratory results and comparison with field and robot techniques, GPS Solutions 10(2), 136–145 (2006)

    Article  Google Scholar 

  25. J.T. Wu, S.C. Wu, G.A. Hajj, W.I. Bertiger, S.M. Lichten: Effects of antenna orientation on GPS carrier-phase, Man. Geodetica 18, 91–98 (1993)

    Google Scholar 

  26. A.Q. Le, C.C.J.M. Tiberius: Phase wind-up effects in precise point positioning with kinematic platforms, Proc. NAVITEC, Noordwijk (2006) pp. 1–8, (ESA, Noordwijk 2006)

    Google Scholar 

  27. P. Steigenberger: Accuracy of Current and Future Satellite Navigation Systems, Habilitation Thesis (Fakultät Bau Geo Umwelt, Technische Universität München, Munich 2015)

    Google Scholar 

  28. W.M. Folkner, J.G. Williams, D.H. Boggs: The Planetary and Lunar Ephemeris DE421, Memorandum IOM 343R-08-003 (Jet Propulsion Laboratory, Pasadena 2008)

    Google Scholar 

  29. J.L. Hilton, C.Y. Hohenkerk: A comparison of the high accuracy planetary ephemerides DE421, EPM2008, and INPOP08, Proc. Journées, 2010, ‘‘Systèmes de Réfrence Spatio-Temporels’’ (JSR2010): New challenges for reference systems and numerical standards in astronomy, Paris, ed. by N. Capitaine (Observatoire de Paris, Paris 2011) pp. 77–80

    Google Scholar 

  30. H.F. Fliegel, K.M. Harrington: Sun/Moon position routines for GPS trajectory calculations, Proc. AIAA/AAS Astrodyn. Conf., Hilton Head Island (1992) pp. 625–631

    Google Scholar 

  31. J.H. Meeus: Astronomical Algorithms (Willmann-Bell, Richmond 1991)

    Google Scholar 

  32. O. Montenbruck, E. Gill: Satellite Orbits - Models, Methods and Applications (Springer, Berlin 2000)

    Book  Google Scholar 

  33. H.A. Marques, J.F.G. Monico, M. Aquino: RINEX_HO: Second-and third-order ionospheric corrections for RINEX observation files, GPS Solutions 15(3), 305–314 (2011)

    Article  Google Scholar 

  34. N. Jakowski, F. Porsch, G. Mayer: Ionosphere-induced-ray-path bending effects in precise satellite positioning systems, Z. Satell. Position. Navig. Kommun. SPN 1/94, 6–13 (1994)

    Google Scholar 

  35. Z. Wang, Y. Wu, K. Zhang, Y. Meng: Triple-frequency method for high-order ionospheric refractive error modelling in GPS modernization, J. Glob. Position. Syst. 1(9), 291–295 (2005)

    Article  Google Scholar 

  36. J. Saastamoinen: Atmospheric correction for the troposphere and stratosphere in radio ranging of satellites. In: The Use of Artificial Satellites for Geodesy, Geophysical Monograph, Vol. 15, ed. by S.W. Henriksen, A. Mancini, B.H. Chovitz (AGU, Washington 1972) pp. 247–251

    Google Scholar 

  37. J.L. Davis, T.A. Herring, I.I. Shapiro, A.E.E. Rogers, G. Elgered: Geodesy by radio interferometry: Effects of atmospheric modeling errors on estimates of baseline length, Radio Sci. 20(6), 1593–1607 (1985)

    Article  Google Scholar 

  38. G. Chen, T.A. Herring: Effects of atmospheric azimuthal asymmetry on the analysis of space geodetic data, J. Geophys. Res. 102(B9), 20489–20502 (1997)

    Article  Google Scholar 

  39. D.S. MacMillan, C. Ma: Atmospheric gradients and the VLBI terrestrial and celestial reference frames, Geophys. Res. Lett. 24(4), 453–456 (1997)

    Article  Google Scholar 

  40. J.W. Marini: Correction of satellite tracking data for an arbitrary tropospheric profile, Radio Sci. 7(2), 223–231 (1972)

    Article  Google Scholar 

  41. K.M. Lagler, M. Schindelegger, J. Bohm, H. Krasna, T. Nilsson: GPT2: Empirical slant delay model for radio space geodetic techniques, Geophys. Res. Lett. 40(6), 1069–1073 (2013)

    Article  Google Scholar 

  42. J. Boehm, B. Werl, H. Schuh: Troposphere mapping functions for GPS and very long baseline interferometry from European centre for medium-range weather forecasts operational analysis data, J. Geophys. Res. 111(B02406), 1–9 (2006)

    Google Scholar 

  43. L. Urquhart, F.G. Nievinski, M.C. Santos: Assessment of troposphere mapping functions using three dimensional raytracing, GPS Solutions 18(3), 345–354 (2014)

    Article  Google Scholar 

  44. GGOS Atmosphere – Atmosphere Delays (Vienna Univ. Technology, Vienna 2014) http://ggosatm.hg.tuwien.ac.at/delay.html

  45. UNB Vienna Mapping Function Service (Univ. New-Brunswick, Frederiction 2015) http://unb-vmf1.gge.unb.ca/

  46. J. Kouba: Implementation and testing of the gridded Vienna mapping function 1 (VMF1), J. Geodesy 82, 193–205 (2008)

    Article  Google Scholar 

  47. J. Kouba: Testing of global pressure/temperature (GPT) model and global mapping function (GMF) in GPS analyses, J. Geodesy 83(3), 199–208 (2009)

    Article  Google Scholar 

  48. R. Schmid: Upcoming switch to IGS08/igs08.atx – Details on igs08.atx (IGS Mail 6355; International GNSS Service, 7 Mar. 2011) http://igscb.jpl.nasa.gov/pipermail/igsmail/2011/006347.html

  49. G. Wübbena, M. Schmitz, G. Boettcher, C. Schumann: Absolute GNSS antenna calibration with a robot: Repeatability of phase variations, calibration of GLONASS and determination of carrier-to-noise pattern, Proc. IGS Workshop, Darmstadt (ESA/ESOC, Darmstadt 2006) pp. 1–12

    Google Scholar 

  50. RINEX - The Receiver Independent Exchange Format – Version 3.03 14 July 2015 (IGS RINEX WG and RTCM-SC104, 2015)

    Google Scholar 

  51. L. Scott: Why do GNSS systems use circular polarization antennas?, Inside GNSS 2(2), 30–33 (2007)

    Google Scholar 

  52. M.L. Psiaki, S. Mohiuddin: Modeling, analysis, and simulation of GPS carrier phase for spacecraft relative navigation, J. Guid. Contr. Dyn. 30(6), 1628–1639 (2007)

    Article  Google Scholar 

  53. Y.E. Bar-Sever: A new module for GPS yaw attitude control, Proc. IGS Workshop – Special Topics and New Directions, Potsdam (GeoforschungsZentrum, Potsdam 1996) pp. 128–140

    Google Scholar 

  54. J. Kouba: A simplified yaw-attitude model for eclipsing GPS satellites, GPS Solutions 13(1), 1–12 (2009)

    Article  Google Scholar 

  55. F. Dilssner, R. Springer, G. Gienger, J. Dow: The GLONASS-M satellite yaw-attitude model, Adv. Space Res. 47(1), 160–171 (2010)

    Article  Google Scholar 

  56. S. Banville, H. Tang: Antenna rotation and its effects on kinematic precise point positioning, Proc. ION GNSS 2010, Portland (ION, Virginia 2010) pp. 2545–2552

    Google Scholar 

  57. D.D. McCarthy: IERS Conventions (1989), IERS Technical Note No. 3 (Observatoire de Paris, Paris 1989)

    Google Scholar 

  58. J.M. Wahr: The forced nutation of an elliptical, rotating, elastic, and ocean less Earth, Geophys. J. R. Astron. Soc. 64, 705–727 (1981)

    Article  Google Scholar 

  59. G. Jentzsch: Earth tides and ocean tidal loading. In: Tidal Phenomena, ed. by H. Wilhelm, H.G.W. Wenzel Zürn (Springer, Berlin 1997) pp. 145–171

    Chapter  Google Scholar 

  60. H. Dragert, T.S. James, A. Lambert: Ocean loading corrections for continuous GPS: A case study at the Canadian coastal site holberg, Geophys. Res. Lett. 27(14), 2045–2048 (2000)

    Article  Google Scholar 

  61. H.G. Scherneck: A parameterized solid earth tide model and ocean tide loading effects for global geodetic baseline measurements, Geophs. J. Int. 106, 677–694 (1991)

    Article  Google Scholar 

  62. Online ocean tide loading computation service (Chalmers University) http://holt.oso.chalmers.se/loading/

  63. O. Montenbruck, A. Hauschild: Code biases in multi-GNSS point positioning, Proc. ION ITM 2013, San Diego (ION, Virginia 2013) pp. 616–628

    Google Scholar 

  64. O. Montenbruck, P. Steigenberger, R. Khachikyan, G. Weber, R.B. Langley, L. Mervart, U. Hugentobler: IGS-MGEX: Preparing the ground for multi-constellation GNSS science, Inside GNSS 9(1), 42–49 (2014)

    Google Scholar 

  65. J. Kouba: A Guide to Using International GNSS Service (IGS) Products (IGS, Pasadena 2015), http://kb.igs.org/

    Google Scholar 

  66. International GNSS Service: Analysis center information ftp://igscb.jpl.nasa.gov/igscb/center/analysis/

  67. R.R. Hatch: The synergism of GPS code and carrier measurements, Proc. Third Int. Geodetic Symp. Satellite Doppler Positioning, Las Cruces (Physical Science Laboratory, Las Cruces 1982) pp. 1213–1232

    Google Scholar 

  68. O. Øvstedal: Absolute positioning with single-frequency GPS receivers, GPS Solutions 5(4), 33–44 (2002)

    Article  Google Scholar 

  69. A.Q. Le, C. Tiberius: Single-frequency precise point positioning with optimal filtering, GPS Solutions 11(1), 61–69 (2007)

    Article  Google Scholar 

  70. R.J.P. van Bree, C.C.J.M. Tiberius: Real-time single-frequency precise point positioning: Accuracy assessment, GPS Solutions 16(2), 259–266 (2012)

    Article  Google Scholar 

  71. A. Tetewsky, J. Ross, A. Soltz, N. Vaughn, J. Anzperger, Ch. O’Brien, D. Graham, D. Craig, J. Lozow: Making sense of inter-signal corrections – Accounting for GPS satellite calibration parameters in legacy and modernized ionosphere correction algorithms, Inside GNSS 4(4), 37–48 (2009)

    Google Scholar 

  72. P. Héroux, J. Kouba: GPS precise point positioning with a difference, Geomatics’95, Ottawa (1995) pp. 1–11

    Google Scholar 

  73. T.P. Yunck: Coping with the atmosphere and ionosphere in precise satellite and ground positioning. In: Environmental Effects on Spacecraft Positioning and Trajectories, ed. by A.V. Jones (AGU, Washington 1992), Chap. 1, pp. 1–16

    Google Scholar 

  74. H. Van Der Marel, P. De-Bakker: Single versus dual-frequency precise point positioning – What are the tradeoffs between using L1-only and L1+L2 for PPP?, Inside GNSS 7(4), 30–35 (2012)

    Google Scholar 

  75. S. Choy, K. Zhang, D. Silcock: An evaluation of various ionospheric error mitigation methods used in single frequency PPP, J. Glob. Position. Syst. 7(1), 62–71 (2008)

    Article  Google Scholar 

  76. T. Schüler, H. Diessongo, Y. Poku-Gyamfi: Precise ionosphere-free single-frequency GNSS positioning, GPS Solutions 15(2), 139–147 (2011)

    Article  Google Scholar 

  77. H.T. Diessongo, H. Bock, T. Schüler, S. Junker, A. Kiroe: Exploiting the Galileo E5 wideband signal for improved single-frequency precise positioning, Inside GNSS 7(5), 64–73 (2012)

    Google Scholar 

  78. K. Chen, Y. Gao: Real-time precise point positioning using single frequency data, Proc. ION GNSS 2005, Long Beach (2005), pp. 1514 –1523

    Google Scholar 

  79. S. Banville, R.B. Langley: Cycle-slip correction for single-frequency PPP, Proc. ION GNSS 2012, Nashville (ION, Virginia 2012) pp. 3753–3761

    Google Scholar 

  80. C. Cai, Y. Gao: Precise point positioning using combined GPS and GLONASS observations, J. Glob. Position. Syst. 6(1), 13–22 (2007)

    Article  Google Scholar 

  81. L. Wanninger, S. Wallstab-Freitag: Combined processing of GPS, GLONASS, and SBAS code phase and carrier phase measurements, Proc. ION GNSS 2007, Fort Worth (ION, Virginia 2007) pp. 866–875

    Google Scholar 

  82. C. Cai, Y. Gao: Modeling and assessment of combined GPS/GLONASS precise point positioning, GPS Solutions 17(4), 223–236 (2013)

    Article  Google Scholar 

  83. T. Melgard, E. Vigen, O. Orpen: Advantages of combined GPS and GLONASS PPP – Experiences based on G2, a new service from Fugro, Proc. 13th IAIN World Congress, Stockholm (IAIN, London 2009) pp. 1–7

    Google Scholar 

  84. S. Choy, S. Zhang, F. Lahaye, P. Héroux: A comparison between GPS-only and combined GPS+GLONASS precise point positioning, J. Spatial Sci. 58(2), 169–190 (2013)

    Article  Google Scholar 

  85. L. Wanninger: Carrier-phase inter-frequency biases of GLONASS receivers, J. Geodesy 86(2), 139–148 (2012)

    Article  Google Scholar 

  86. J.M. Sleewaegen, A. Simsky, W. Boon, F. de Wilde, T. Willems: Demystifying GLONASS inter-frequency carrier-phase biases, Inside GNSS 7(3), 57–61 (2012)

    Google Scholar 

  87. M. Becker, P. Zeimetz, E. Schönemann: Anechoic chamber calibrations of phase center variations for new and existing GNSS signals and potential impacts in IGS processing, Proc. IGS Workshop, Newcastle (IGS, Pasaden 2010) pp. 1–44

    Google Scholar 

  88. P. Steigenberger, U. Hugentobler, S. Loyer, F. Perosanz, L. Prange, R. Dach, M. Uhlemann, G. Gendt, O. Montenbruck: Galileo orbit and clock quality of the IGS multi-GNSS experiment, Adv. Space Res. 55(1), 269–281 (2015)

    Article  Google Scholar 

  89. Y. Lou, Y. Liu, C. Shi, X. Yao, F. Zheng: Precise orbit determination of BeiDou constellation based on BETS and MGEX network, Sci. Rep. 4(4692), 1–10 (2014)

    Google Scholar 

  90. P. Steigenberger, A. Hauschild, O. Montenbruck, C. Rodriguez-Solano, U. Hugentobler: Orbit and clock determination of QZS-1 based on the CONGO network, Navigation 60(1), 31–40 (2013)

    Article  Google Scholar 

  91. L. Prange, E. Orliac, R. Dach, D. Arnold, G. Beutler, S. Schaer, A. Jäggi: CODE’s multi-GNSS orbit and clock solution, Proc. EGU General Assembly, Vienna (EGU, Munich 2015) p. 11494

    Google Scholar 

  92. J. Tegedor, O. Øvstedal, E. Vigen: Precise orbit determination and point positioning using GPS, Glonass, Galileo and BeiDou, J. Geod. Sci. 4(1), 65–73 (2014)

    Google Scholar 

  93. D. Odijk, P.J.G. Teunissen: Characterization of between-receiver GPS-Galileo inter-system biases and their effect on mixed ambiguity resolution, GPS Solutions 17(4), 521–533 (2013)

    Article  Google Scholar 

  94. D. Odijk, P.J.G. Teunissen: Estimation of differential inter-system biases between the overlapping frequencies of GPS, Galileo, BeiDou and QZSS, Proc. 4th Int.Coll. Scientific and Fundamental Aspects of the Galileo Programme, Prague 2013 (ESA, Noordwijk 2013) pp. 1–8

    Google Scholar 

  95. A. Dalla Torre, A. Caporali: An analysis of intersystem biases for multi-GNSS positioning, GPS Solutions 19(2), 297–307 (2015)

    Article  Google Scholar 

  96. J. Paziewski, P. Wielgosz: Accounting for Galileo–GPS inter-system biases in precise satellite positioning, J. Geodesy 89(1), 81–93 (2015)

    Article  Google Scholar 

  97. H. Cui, G. Tang, S. Hu, B. Song, H. Liu, J. Sun, P. Zhang, C. Li, M. Ge, C. Han: Multi-GNSS processing combining GPS, GLONASS, BDS and GALILEO observations, Proc. CSNC, Nanjing, Vol. III (2014), ed. by J. Sun, W. Jiao, H. Wu, M. Lu (Springer, Berlin 2014) pp. 121–132

    Google Scholar 

  98. X. Li, X. Zhang, X. Ren, M. Fritsche, J. Wickert, H. Schuh: Precise positioning with current multi-constellation global navigation satellite systems: GPS, GLONASS, Galileo and BeiDou, Sci. Rep. 5(8328), 1–14 (2015)

    Google Scholar 

  99. X. Li, M. Ge, X. Dai, X. Ren, M. Fritsche, J. Wickert, H. Schuh: Accuracy and reliability of multi-GNSS real-time precise positioning: GPS, GLONASS, BeiDou, and Galileo, J. Geodesy 89(6), 607–635 (2015)

    Article  Google Scholar 

  100. P.J.G. Teunissen, R. Odolinski, D. Odijk: Instantaneous BeiDou+GPS RTK positioning with high cut-off elevation angles, J. Geodesy 88(4), 335–350 (2014)

    Article  Google Scholar 

  101. J. Tegedor, O. Øvstedal: Triple carrier precise point positioning (PPP) using GPS L5, Survey Rev. 46(337), 288–297 (2014)

    Article  Google Scholar 

  102. P.J.G. Teunissen, D. Odijk, B. Zhang: PPP-RTK: Results of CORS network-based PPP with integer ambiguity resolution, J. Aeronaut. Astronaut. Aviat, Ser. A 42(4), 223–230 (2010)

    Google Scholar 

  103. E. Schönemann: Analysis of GNSS Raw Observations in PPP Solutions, Ph.D. Thesis (TU Darmstadt, Darmstadt 2013)

    Google Scholar 

  104. H. Chen, W. Jiang, M. Ge, J. Wickert, H. Schuh: Efficient high-rate satellite clock estimation for PPP ambiguity resolution using carrier-ranges, Sensors 14(12), 22300–22312 (2014)

    Article  Google Scholar 

  105. O. Montenbruck, U. Hugentobler, R. Dach, P. Steigenberger, A. Hauschild: Apparent clock variations of the block IIF-1 (SVN-62) GPS satellite, GPS Solutions 16(3), 303–313 (2012)

    Article  Google Scholar 

  106. G. Wübbena, M. Schmitz, A. Bagg: PPP-RTK: Precise point positioning using state-space representation in RTK networks, Proc. ION GNSS 2005, Long Beach (ION, Virginia 2005) pp. 13–16

    Google Scholar 

  107. D. Laurichesse, F. Mercier: Integer ambiguity resolution on undifferenced GPS phase measurements and its application to PPP, Proc. ION GNSS 2007, Fort Worth (ION, Virginia 2007) pp. 839–848

    Google Scholar 

  108. L. Mervart, Z. Lukes, C. Rocken, T. Iwabuchi: Precise point positioning with ambiguity resolution in real-time, Proc. ION GNSS 2008, Savannah (ION, Virginia 2008) pp. 397–405

    Google Scholar 

  109. P. Collins: Isolating and estimating undifferenced GPS integer ambiguities, Proc. ION NTM 2008, San-Diego (ION, Virginia 2008) pp. 720–732

    Google Scholar 

  110. M. Ge, G. Gendt, M. Rotacher, C. Shi, J. Liu: Resolution of GPS carrier-phase ambiguities in precise point positioning (PPP) with daily observations, J. Geodesy 82(7), 389–399 (2008)

    Article  Google Scholar 

  111. W. Bertiger, S. Dessai, B. Haines, N. Harvey, A.W. Moore, S. Owen, P. Weiss: Single receiver phase ambiguity resolution with GPS data, J. Geodesy 84(5), 3337 (2010)

    Article  Google Scholar 

  112. J. Geng, F.N. Teferle, X. Meng, A.H. Dodson: Towards PPP-RTK: Ambiguity resolution in real-time precise point positioning, Adv. Space Res. 47(10), 1664–1673 (2011)

    Article  Google Scholar 

  113. A. Lannes, J.L. Prieur: Calibration of the clock-phase biases of GNSS networks: The closure-ambiguity approach, J. Geodesy 87(8), 709–731 (2013)

    Article  Google Scholar 

  114. P. Collins, S. Bisnath, F. Lahaye, P. Héroux: Undifferenced GPS ambiguity resolution using the decoupled clock model and ambiguity datum fixing, Navigation 57(2), 123–135 (2010)

    Article  Google Scholar 

  115. D. Laurichesse, F. Mercier, J.P. Berthias, P. Broca, L. Cerri: Integer ambiguity resolution on undifferenced GPS phase measurements and its application to PPP and satellite precise orbit determination, Navigation 56(2), 135–149 (2009)

    Article  Google Scholar 

  116. B. Zhang, P.J.G. Teunissen, D. Odijk: A novel un-differenced PPP-RTK concept, J. Navigation 64(S1), 180–191 (2011)

    Article  Google Scholar 

  117. J. Geng, C. Shi, M. Ge, A.H. Dodson, Y. Lou, Q. Zhao, J. Liu: Improving the estimation of fractional-cycle biases for ambiguity resolution in precise point positioning, J. Geodesy 86(8), 579–589 (2013)

    Article  Google Scholar 

  118. G. Blewitt: Fixed point theorems of GPS carrier-phase ambiguity resolution and their application to massive network processing: Ambizap, J. Geophys. Res. 113(B12410), 1–12 (2008)

    Google Scholar 

  119. D. Odijk, P.J.G. Teunissen, B. Zhang: Single-frequency integer ambiguity resolution enabled GPS precise point positioning, J. Survey Eng. 138(4), 193–202 (2012)

    Article  Google Scholar 

  120. L. Mervart, C. Rocken, T. Twabuchi, Z. Lukes, M. Kanzaki: Precise point positioning with fast ambiguity resolution prerequisites, algorithms and performance, Proc. ION GNSS 2013, Nashville (ION, Virginia 2013) pp. 1176–1185

    Google Scholar 

  121. X. Li, M. Ge, H. Zhang, J. Wickert: A method for improving uncalibrated phase delay estimation and ambiguity fixing in real-time precise point positioning, J. Geodesy 87(5), 405–416 (2013)

    Article  Google Scholar 

  122. S. Banville, P. Collins, P. Héroux, P. Tétreault, P.F. Lahaye: Precise cooperative positioning: A case study in Canada, Proc. ION GNSS 2014, Tampa (ION, Virginia 2014) pp. 2503–2511

    Google Scholar 

  123. P. Collins, F. Lahaye, S. Bisnath: External ionospheric constraints for improved PPP-AR initialisation and a generalised local augmentation concept, Proc. ION GNSS 2012, Nashville (ION, Virginia 2012) pp. 3055–3065

    Google Scholar 

  124. J. Geng, Y. Bock: Triple-frequency GPS precise point positioning with rapid ambiguity resolution, J. Geodesy 87(5), 449–460 (2013)

    Article  Google Scholar 

  125. L. Pan, C. Cai, R. Santerre, J. Zhu: Combined GPS/GLONASS precise point positioning with fixed GPS ambiguities, Sensors 14, 17530–17547 (2014)

    Article  Google Scholar 

  126. D. Odijk, B. Zhang, P.J.G. Teunissen: Multi-GNSS PPP and PPP-RTK: Some GPS+BDS results in Australia, Proc. CSNC (2015) Vol. II, Xi’an, ed. by J. Sun, J. Liu, S. Fan, X. Lu (Springer, Berlin 2015) pp. 613–623

    Google Scholar 

  127. L. Qu, Q. Zhao, J. Guo, G. Wang, X. Guo, Q. Zhang, K. Jiang, L. Luo: BDS/GNSS real-time kinematic precise point positioning with un-differenced ambiguity resolution, Proc. CSNC, Vol. III (2015), Xi’an, ed. by J. Sun, J. Liu, S. Fan, X. Lu (Springer, Berlin 2015) pp. 13–29

    Google Scholar 

  128. G. Weber, D. Dettmering, H. Gebhard, R. Kalafus: Networked transport of RTCM via internet protocol (Ntrip) – IP-streaming for real-time GNSS applications, Proc. ION GPS 2005, Long Beach (ION, Virginia 2005) pp. 2243–2247

    Google Scholar 

  129. The Precise Point Positioning Center (Univ. New-Brunswick, Frederiction 2015), http://gge.unb.ca/Resources/PPP/Purpose.html

  130. P. Héroux, J. Kouba: GPS precise point positioning using IGS orbit products, Phys. Chem. Earth (A) 26(6–8), 573–578 (2001)

    Article  Google Scholar 

  131. H. Bock, R. Dach, A. Jäggi, G. Beutler: High-rate GPS clock corrections from CODE: Support of 1 Hz applications, J. Geodesy 83(11), 1083–1094 (2009)

    Article  Google Scholar 

  132. S.H. Byun, Y.E. Bar-Sever: A new type of troposphere zenith path delay product of the international GNSS service, J. Geodesy 83(3/4), 1–7 (2009)

    Article  Google Scholar 

  133. G. Gendt: IGS combination of tropospheric estimates – Experience from pilot experiment, Proc. Anal. Center Workshop (1998) Darmstadt, ed. by J.M. Dow, J. Kouba, T. Springer (IGS, Pasadena 1998) pp. 205–216

    Google Scholar 

  134. K. Senior, P. Koppang, D. Matsakis, J. Ray: Developing an IGS time scale, Proc. IEEE Freq. Contr. Symp. 2001, Seattle (IEEE, Washington 2001) pp. 211–218

    Google Scholar 

  135. J. Dow, R.E. Neilan, G. Gendt: The International GPS Service (IGS): Celebrating the 10th anniversary and looking to the next decade, Adv. Space Res. 36, 320–326 (2005)

    Article  Google Scholar 

Download references

Acknowledgements

Data and solution products from the International GNSS Service (IGS) have been used in the preparation of this chapter. Also, the significant help and contributions of the Editors, Oliver Montenbruck and Peter Teunissen, are acknowledged, in particular in regards to the emerging GNSS signals and undifferenced ambiguity resolutions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Kouba .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kouba, J., Lahaye, F., Tétreault, P. (2017). Precise Point Positioning. In: Teunissen, P.J., Montenbruck, O. (eds) Springer Handbook of Global Navigation Satellite Systems. Springer Handbooks. Springer, Cham. https://doi.org/10.1007/978-3-319-42928-1_25

Download citation

Publish with us

Policies and ethics