Abstract
Background modelling techniques use the time, spatial, intensity and image plane information to detect the objects. These features are integrated to extract the maximum information. The utilization of background techniques are mostly dependent on various parameters that can be learning rate or threshold. High dependency on parameters increase the complexity and make it difficult to control in changing weather conditions. Parameters based techniques do not provide the high efficiency in outdoor computer vision applications where illumination conditions are difficult to predict. This paper presents an algorithm that is based on background modelling with less dependency on parameters and robust to illumination changes. Camera jitter causes the major effect in modelling techniques so camera jitter is also addressed. A new way of separation of shadow from object is also implemented. Performance of the algorithm is compared with other state-of-the-art methods.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
We’re sorry, something doesn't seem to be working properly.
Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.
References
Kanhere, N.K., Pundlik, S.J., Birchfield, S.T.: Vehicle segmentation and tracking from a low-angle off-axis camera. In: Proceeding IEEE Conference Computer Vision Pattern Recognition, vol. 2, pp. 1152–1157 (2005)
Pang, C.C.C., Lam, W.W.L., Yung, N.H.C.: A method for vehicle count in the presence of multiple-vehicle occlusions in traffic images. IEEE Trans. Intell. Trans. Syst. 8(3), 441–459 (2007)
Premaratne, P., Ajaz, S., Premaratne, M.: Hand gesture tracking and recognition system for control of consumer electronics. In: Huang, D.-S., Gan, Y., Gupta, P., Gromiha, M. (eds.) ICIC 2011. LNCS (LNAI), vol. 6839, pp. 588–593. Springer, Heidelberg (2012)
Premaratne, P., Nguyen, Q., Premaratne, M.: Human computer interaction using hand gestures. In: Huang, D.-S., McGinnity, M., Heutte, L., Zhang, X.-P. (eds.) ICIC 2010. CCIS, vol. 93, pp. 381–386. Springer, Heidelberg (2010)
Premaratne, P., Safaei, F., Nguyen, Q.: Moment invariant based control system using hand gestures. In: Huang, D.-S., Li, K., Irwin, G.W. (eds.) ICIC 2006. LNCIS, vol. 345, pp. 322–333. Springer, Heidelberg (2006)
Premaratne, P., Premaratne, M.: Image Matching using Moment Invariants. Neurocomputing 137, 65–70 (2014)
Premaratne, P., Ajaz, S., Premaratne, M.: Hand gesture tracking and recognition system using Lucas-Kanade algorithm for control of consumer electronics. Neurocomputing 116(20), 242–249 (2013)
Premaratne, P., Nguyen, Q.: Consumer electronics control system based on hand gesture moment invariants. IET Comput. Vis. 1, 35–41 (2007)
Yang, S., Premaratne, P., Vial, P.: Hand gesture recognition: an overview. In: 5th IEEE International Conference on Broadband Network and Multimedia Technology (2013)
Zou, Z., Premaratne, P., Premaratne, M., Monaragala, R., Bandara, N.: Dynamic hand gesture recognition system using moment invariants. In: ICIAfS, IEEE Computational Intelligence Society, Colombo, Sri Lanka, pp. 108-113 (2010)
Herath, D.C., Kroos, C., Stevens, C.J., Cavedon, L., Premaratne, P.: Thinking head: towards human centred robotic. In: 2010 11th International Conference on Control, Automation, Robotics and Vision (ICARCV), Singapore, pp. 2042–2047 (2010)
Minge, E.: Evaluation of Non-intrusive Technologies for Traffic Detection. Minnesota Department of Transportation, Office of Policy Analysis, Research and Innovation, SRF Consulting Group, US Department of Transportation, Federal Highway Administration (2010)
Morris, B., Trivedi, M.: Robust classification and tracking of vehicles in traffic video streams. In: IEEE Conference Intelligent Transportation Systems, pp. 1078–1083 (2006)
Kastrinaki, V., Zervakis, M., Kalaitzakis, K.: A survey of video processing techniques for traffic applications. Image Vis. Comput. 21, 359–381 (2003)
Buch, N., Velastin, S., Orwell, J.: A review of computer vision techniques for the analysis of urban traffic. IEEE Trans. Intell. Transp. Syst. 12, 920–939 (2011)
Mandellos, N.A., Keramitsoglou, I., Kiranoudis, C.T.: A background subtraction algorithm for detecting and tracking vehicle. Expert Syst. Appl. 38, 1619–1631 (2011)
Lima Azevedo, C., Cardoso, J., Ben-Akiva, M., Costeira, J.P., Marques, M.: Automatic vehicle trajectory extraction by aerial remote sensing. Presented at the 16th Euro Working Group Transportation, Procedia Soc. Behav. Sci., Porto, Portugal (2013)
Sánchez, A., Nunes, E., Conci, A.: Using adaptive background subtraction into a multilevel model for traffic surveillance. Integr. Comput. Aided Eng. 19(3), 239–256 (2012)
Unzueta, L., et al.: Adaptive multicue background subtraction for robust vehicle counting and classification. IEEE Trans. Intell. Transp. Syst. 13(2), 527–540 (2012)
Wang, Y., Jodoin, P.-M., Fatih, P., Janusz, K., Yannick, B., Prakash, I.: Change Detection 2014 Benchmark (2014). http://wordpress-jodoin.dmi.usherb.ca/results2014/
Varadarajan, S., Wang, H., Miller, P., Zhou, H.: Fast convergence of regularised region-based mixture of Gaussians for dynamic background modelling. Comput. Vis. Imaging Underst. (CVIU) 136, 45–58 (2015)
Stauffer, C., Grimson, W.E.L.: Adaptive background mixture models for real-time tracking. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2246–2252 (1999)
Zivkovic, Z.: Improved adaptive gaussian mixture model for background subtraction. In: ICPR 2004, Proceedings of the 17th International Conference on Pattern Recognition, vol. 2, pp. 28–31 (2004)
KaewTraKulPong, P., Bowden, R.: An improved adaptive background mixture model for real-time tracking with shadow detection. In: Remagnino, P., Jones, G.A., Paragios, N., Regazzoni, C.S. (eds.) Advanced Video Based Surveillance Systems, pp. 135–144. Springer, New York (2001)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Copyright information
© 2016 Springer International Publishing Switzerland
About this paper
Cite this paper
Iftikhar, Z., Premaratne, P., Vial, P., Yang, S. (2016). Tempo-Spatial Compactness Based Background Subtraction for Vehicle Detection and Tracking. In: Huang, DS., Bevilacqua, V., Premaratne, P. (eds) Intelligent Computing Theories and Application. ICIC 2016. Lecture Notes in Computer Science(), vol 9771. Springer, Cham. https://doi.org/10.1007/978-3-319-42291-6_9
Download citation
DOI: https://doi.org/10.1007/978-3-319-42291-6_9
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-42290-9
Online ISBN: 978-3-319-42291-6
eBook Packages: Computer ScienceComputer Science (R0)