Abstract
The purpose of this paper is to automatically detect local intensity changes in time series of grayscale images. For each pixel coordinate, a time series of grayscale values is extracted. An intensity change causes a jump in the level of the time series and affects several adjacent pixel coordinates at almost the same points in time. We use two-sample tests in moving windows to identify these jumps. The resulting candidate pixels are aggregated to segments using their estimated jump time and coordinates. As an application we consider data from the plasmon assisted microscopy of nanosize objects to identify specific particles in a sample fluid. Tests based on the one-sample Hodges-Lehmann estimator, the two-sample t-test or the two-sample Wilcoxon rank-sum test achieve high detection rates and a rather precise estimation of the change time.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Abbas, S.: Detektion von Nanoobjekten in Graustufenbildern und Bildsequenzen mittels robuster Zeitreihenmethoden zur Strukturbrucherkennung. Master’s thesis, TU Dortmund University, Dortmund (2013)
Bischl, B., Lang, M., Mersmann, O.: BatchExperiments: Statistical Experiments on Batch Computing Clusters. R package version 1.0-0968 (2013)
Bivand, R.S., Pebesma, E., Gomez-Rubio, V.: Applied Spatial Data Analysis with R, 2nd edn. Springer, New York (2013)
Dahl, D.B.: xtable: Export tables to LaTeX or HTML. R package version 1.7-3 (2014)
Fried, R.: On the Robust detection of edges in time series filtering. Comput. Stat. Data Anal. 52(2), 1063–1074 (2007)
Fried, R., Dehling, H.: Robust nonparametric tests for the two-sample location problem. Stat. Methods Appl. 20(4), 409–422 (2011)
Fried, R., Gather, U.: On rank tests for shift detection in time series. Comput. Stat. Data Anal. 52(1), 221–233 (2007)
Gomes, A.J.P., Voiculescu, I., Jorge, J., Wyvill, B., Galbraith, C.: Implicit Curves and Surfaces: Mathematics, Data Structures and Algorithms. Springer, Dordrecht (2009)
Gonzalez, R.C., Woods, R.E.: Digital Image Processing, 3rd edn. Prentice Hall, Upper Saddle River (2008)
Hodges, J.L., Lehmann, E.L.: Estimates of location based on rank tests. Ann. Math. Stat. 34(2), 598–611 (1963)
Holm, S.: A simple sequentially rejective multiple test procedure. Scand. J. Stat. 6(2), 65–70 (1979)
Høyland, A.: Robustness of the Hodges-Lehmann estimates for shift. Ann. Math. Statist. 36(1), 174–197 (1965)
Jähne, B.: Digitale Bildverarbeitung, 7th edn. Springer, Berlin (2012)
Maronna, R.A., Martin, R.D., Yohai, V.J.: Robust Statistics: Theory and methods. Wiley Series in Probability and Statistics. Wiley, Chichester (2006)
Meyer, D., Dimitriadou, E., Hornik, K., Weingessel, A., Leisch, F.: e1071: Misc Functions of the Department of Statistics (e1071), TU Wien. R package version 1.6-3 (2014)
Morell, O.: On nonparametric methods for robust jump-preserving smoothing and trend detection. Ph.D. thesis, TU Dortmund University, Dortmund (2012)
Pages, H., Carlson, M., Falcon, S., Li, N.: AnnotationDbi: Annotation Database Interface. R package version 1.26.0
Qiu, P., Yandell, B.: A local polynomial jump-detection algorithm in nonparametric regression. Technometrics 40(2), 141–152 (1998)
R Core Team: R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna (2013)
Rangayyan, R.M.: Biomedical Image Analysis. CRC Press, Boca Raton (2005)
Sharpsteen, C., Bracken, C.: tikzDevice: R Graphics Output in LaTeX Format. R package version 0.7.0 (2013)
Siedhoff, D., Weichert, F., Libuschewski, P., Timm, C.: Detection and classification of nano-objects in biosensor data. In: International Conference on Systems Biology - Microscopic Image Analysis with Application in Biology (MIAAB 2011), pp. 1–6 (2011)
Timm, C., Libuschewski, P., Siedhoff, D., Weichert, F., Müller, H., Marwedel, P.: Improving nanoobject detection in optical biosensor data. In: Proceedings of the 5th International Symposium on Bio- and Medical Information and Cybernetics (BMIC 2011), pp. 236–240 (2011)
Urbanek, S.: png: Read and Write PNG Images. R package version 0.1-7 (2013)
Weichert, F., Gaspar, M., Timm, C., Zybin, A., Gurevich, E.L., Engel, M., Müller, H., Marwedel, P.: Signal analysis and classification for surface plasmon assisted microscopy of nanoobjects. Sens. Actuators B 151, 281–290 (2010)
Wickham, H.: ggplot2: Elegant Graphics for Data Analysis. Springer, New York (2009)
Wu, J.S., Chu, C.K.: Kernel-type estimators of jump points and values of a regression function. Ann. Stat. 21(3), 1545–1566 (1993)
Zybin, A., Kuritsyn, Y.A., Gurevich, E.L., Temchura, V.V., Überla, K., Niemax, K.: Real-time detection of single immobilized nanoparticles by surface plasmon resonance Imaging. Plasmonics 5(1), 31–35 (2010)
Acknowledgments
The work on this paper has been supported by Deutsche Forschungsgemeinschaft (DFG) within the Collaborative Research Center SFB 876 “Providing Information by Resource-Constrained Analysis”, project C3. The computations were performed on the LiDO HPC cluster at TU Dortmund University. We thank the Leibniz-Institut für Analytische Wissenschaften – ISAS – e.V. in Dortmund for providing the PAMONO data to us and Dominic Siedhoff and Pascal Libuschewski for helpful advice on how to work with the PAMONO data and for providing the results for the reference method.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer International Publishing Switzerland
About this chapter
Cite this chapter
Abbas, S., Fried, R., Gather, U. (2016). Detection of Local Intensity Changes in Grayscale Images with Robust Methods for Time-Series Analysis. In: Michaelis, S., Piatkowski, N., Stolpe, M. (eds) Solving Large Scale Learning Tasks. Challenges and Algorithms. Lecture Notes in Computer Science(), vol 9580. Springer, Cham. https://doi.org/10.1007/978-3-319-41706-6_13
Download citation
DOI: https://doi.org/10.1007/978-3-319-41706-6_13
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-41705-9
Online ISBN: 978-3-319-41706-6
eBook Packages: Computer ScienceComputer Science (R0)