[go: up one dir, main page]

Skip to main content

Detection of Local Intensity Changes in Grayscale Images with Robust Methods for Time-Series Analysis

  • Chapter
  • First Online:
Solving Large Scale Learning Tasks. Challenges and Algorithms

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 9580))

  • 1499 Accesses

Abstract

The purpose of this paper is to automatically detect local intensity changes in time series of grayscale images. For each pixel coordinate, a time series of grayscale values is extracted. An intensity change causes a jump in the level of the time series and affects several adjacent pixel coordinates at almost the same points in time. We use two-sample tests in moving windows to identify these jumps. The resulting candidate pixels are aggregated to segments using their estimated jump time and coordinates. As an application we consider data from the plasmon assisted microscopy of nanosize objects to identify specific particles in a sample fluid. Tests based on the one-sample Hodges-Lehmann estimator, the two-sample t-test or the two-sample Wilcoxon rank-sum test achieve high detection rates and a rather precise estimation of the change time.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

eBook
USD 15.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 15.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Abbas, S.: Detektion von Nanoobjekten in Graustufenbildern und Bildsequenzen mittels robuster Zeitreihenmethoden zur Strukturbrucherkennung. Master’s thesis, TU Dortmund University, Dortmund (2013)

    Google Scholar 

  2. Bischl, B., Lang, M., Mersmann, O.: BatchExperiments: Statistical Experiments on Batch Computing Clusters. R package version 1.0-0968 (2013)

    Google Scholar 

  3. Bivand, R.S., Pebesma, E., Gomez-Rubio, V.: Applied Spatial Data Analysis with R, 2nd edn. Springer, New York (2013)

    Book  MATH  Google Scholar 

  4. Dahl, D.B.: xtable: Export tables to LaTeX or HTML. R package version 1.7-3 (2014)

    Google Scholar 

  5. Fried, R.: On the Robust detection of edges in time series filtering. Comput. Stat. Data Anal. 52(2), 1063–1074 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  6. Fried, R., Dehling, H.: Robust nonparametric tests for the two-sample location problem. Stat. Methods Appl. 20(4), 409–422 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  7. Fried, R., Gather, U.: On rank tests for shift detection in time series. Comput. Stat. Data Anal. 52(1), 221–233 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  8. Gomes, A.J.P., Voiculescu, I., Jorge, J., Wyvill, B., Galbraith, C.: Implicit Curves and Surfaces: Mathematics, Data Structures and Algorithms. Springer, Dordrecht (2009)

    Book  MATH  Google Scholar 

  9. Gonzalez, R.C., Woods, R.E.: Digital Image Processing, 3rd edn. Prentice Hall, Upper Saddle River (2008)

    Google Scholar 

  10. Hodges, J.L., Lehmann, E.L.: Estimates of location based on rank tests. Ann. Math. Stat. 34(2), 598–611 (1963)

    Article  MathSciNet  MATH  Google Scholar 

  11. Holm, S.: A simple sequentially rejective multiple test procedure. Scand. J. Stat. 6(2), 65–70 (1979)

    MathSciNet  MATH  Google Scholar 

  12. Høyland, A.: Robustness of the Hodges-Lehmann estimates for shift. Ann. Math. Statist. 36(1), 174–197 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  13. Jähne, B.: Digitale Bildverarbeitung, 7th edn. Springer, Berlin (2012)

    Book  MATH  Google Scholar 

  14. Maronna, R.A., Martin, R.D., Yohai, V.J.: Robust Statistics: Theory and methods. Wiley Series in Probability and Statistics. Wiley, Chichester (2006)

    Book  MATH  Google Scholar 

  15. Meyer, D., Dimitriadou, E., Hornik, K., Weingessel, A., Leisch, F.: e1071: Misc Functions of the Department of Statistics (e1071), TU Wien. R package version 1.6-3 (2014)

    Google Scholar 

  16. Morell, O.: On nonparametric methods for robust jump-preserving smoothing and trend detection. Ph.D. thesis, TU Dortmund University, Dortmund (2012)

    Google Scholar 

  17. Pages, H., Carlson, M., Falcon, S., Li, N.: AnnotationDbi: Annotation Database Interface. R package version 1.26.0

    Google Scholar 

  18. Qiu, P., Yandell, B.: A local polynomial jump-detection algorithm in nonparametric regression. Technometrics 40(2), 141–152 (1998)

    MathSciNet  Google Scholar 

  19. R Core Team: R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna (2013)

    Google Scholar 

  20. Rangayyan, R.M.: Biomedical Image Analysis. CRC Press, Boca Raton (2005)

    Google Scholar 

  21. Sharpsteen, C., Bracken, C.: tikzDevice: R Graphics Output in LaTeX Format. R package version 0.7.0 (2013)

    Google Scholar 

  22. Siedhoff, D., Weichert, F., Libuschewski, P., Timm, C.: Detection and classification of nano-objects in biosensor data. In: International Conference on Systems Biology - Microscopic Image Analysis with Application in Biology (MIAAB 2011), pp. 1–6 (2011)

    Google Scholar 

  23. Timm, C., Libuschewski, P., Siedhoff, D., Weichert, F., Müller, H., Marwedel, P.: Improving nanoobject detection in optical biosensor data. In: Proceedings of the 5th International Symposium on Bio- and Medical Information and Cybernetics (BMIC 2011), pp. 236–240 (2011)

    Google Scholar 

  24. Urbanek, S.: png: Read and Write PNG Images. R package version 0.1-7 (2013)

    Google Scholar 

  25. Weichert, F., Gaspar, M., Timm, C., Zybin, A., Gurevich, E.L., Engel, M., Müller, H., Marwedel, P.: Signal analysis and classification for surface plasmon assisted microscopy of nanoobjects. Sens. Actuators B 151, 281–290 (2010)

    Article  Google Scholar 

  26. Wickham, H.: ggplot2: Elegant Graphics for Data Analysis. Springer, New York (2009)

    Book  MATH  Google Scholar 

  27. Wu, J.S., Chu, C.K.: Kernel-type estimators of jump points and values of a regression function. Ann. Stat. 21(3), 1545–1566 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  28. Zybin, A., Kuritsyn, Y.A., Gurevich, E.L., Temchura, V.V., Überla, K., Niemax, K.: Real-time detection of single immobilized nanoparticles by surface plasmon resonance Imaging. Plasmonics 5(1), 31–35 (2010)

    Article  Google Scholar 

Download references

Acknowledgments

The work on this paper has been supported by Deutsche Forschungsgemeinschaft (DFG) within the Collaborative Research Center SFB 876 “Providing Information by Resource-Constrained Analysis”, project C3. The computations were performed on the LiDO HPC cluster at TU Dortmund University. We thank the Leibniz-Institut für Analytische Wissenschaften – ISAS – e.V. in Dortmund for providing the PAMONO data to us and Dominic Siedhoff and Pascal Libuschewski for helpful advice on how to work with the PAMONO data and for providing the results for the reference method.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sermad Abbas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Abbas, S., Fried, R., Gather, U. (2016). Detection of Local Intensity Changes in Grayscale Images with Robust Methods for Time-Series Analysis. In: Michaelis, S., Piatkowski, N., Stolpe, M. (eds) Solving Large Scale Learning Tasks. Challenges and Algorithms. Lecture Notes in Computer Science(), vol 9580. Springer, Cham. https://doi.org/10.1007/978-3-319-41706-6_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-41706-6_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-41705-9

  • Online ISBN: 978-3-319-41706-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics