Abstract
In this paper, we study the parallelization of a Cartesian grid based treecode algorithm in evaluating electrostatic potentials in a charged particle system. The treecode algorithm uses a far-field Taylor expansion to compute \(\mathcal {O}(N \log {N})\) particle-cluster interactions to replace the \(\mathcal {O}(N^2)\) particle-particle interactions. The treecode algorithm is implemented with MPI based parallelization. We design schemes to optimize the implementation adaptive to the particle location. The numerical results show high parallel efficiency. These optimized schemes are further extended to accelerate GMRES iteration in solving boundary integral Poisson–Boltzmann equation in which the discretized linear algebraic system resembles the interactions of the charged system.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Greengard, L., Rokhlin, V.: A fast algorithm for particle simulations. J. Comput. Phy. 73(2), 325–348 (1987)
Barnes, J., Hut, P.: A hierarchical o(n log n) force-calculation algorithm. Nature 324(6096), 446–449 (1986)
Li, P., Johnston, H., Krasny, R.: A Cartesian treecode for screened Coulomb interactions. J. Comput. Phys. 228(10), 3858–3868 (2009)
Geng, W., Krasny, R.: A treecode-accelerated boundary integral Poisson-Boltzmann solver for electrostatics of solvated biomolecules. J. Comput. Phy. 247, 62–78 (2013)
Chen, J., Krasny, R., Reynolds, D., Geng, W.: Cyclically paralleled treecode for fast computing electrostatic interactions on molecular surfaces. in preparation, 2015
Connolly, M.L.: Depth buffer algorithms for molecular modeling. J. Mol. Graphics 3, 19–24 (1985)
Lee, B., Richards, F.M.: The interpretation of protein structures: estimation of static accessibility. J. Mol. Biol. 55(3), 379–400 (1971)
Sanner, M.F., Olson, A.J., Spehner, J.C.: Reduced surface: an efficient way to compute molecular surfaces. Biopolymers 38, 305–320 (1996)
Baker, N.A.: Improving implicit solvent simulations: a Poisson-centric view. Curr. Opin. Struct. Biol. 15(2), 137–143 (2005)
Fogolari, F., Brigo, A., Molinari, H.: The Poisson-Boltzmann equation for biomolecular electrostatics: a tool for structural biology. J. Mol. Recognit. 15(6), 377–392 (2002)
Lu, B.Z., Zhou, Y.C., Holst, M.J., McCammon, J.A.: Recent progress in numerical methods for the Poisson-Boltzmann equation in biophysical applications. Commun. Comput. Phy. 3(5), 973–1009 (2008)
Juffer, A., Botta, E., van Keulen, B., van der Ploeg, A., Berendsen, H.: The electric potential of a macromolecule in a solvent: a fundamental approach. J. Comput. Phys. 97, 144–171 (1991)
Saad, Y., Schultz, M.: GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems. SIAM J. Sci. Stat. Comput. 7(3), 856–869 (1986)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer International Publishing Switzerland
About this paper
Cite this paper
Chen, J., Geng, W. (2016). Parallel Computing of the Adaptive N-Body Treecode Algorithm for Solving Boundary Integral Poisson-Boltzmann Equation. In: Xie, J., Chen, Z., Douglas, C., Zhang, W., Chen, Y. (eds) High Performance Computing and Applications. HPCA 2015. Lecture Notes in Computer Science(), vol 9576. Springer, Cham. https://doi.org/10.1007/978-3-319-32557-6_8
Download citation
DOI: https://doi.org/10.1007/978-3-319-32557-6_8
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-32556-9
Online ISBN: 978-3-319-32557-6
eBook Packages: Computer ScienceComputer Science (R0)