Abstract
Robotics for agriculture and forestry (GlossaryTerm
A&F
) represents the ultimate application of one of our society’s latest and most advanced innovations to its most ancient and important industries. Over the course of history, mechanization and automation increased crop output several orders of magnitude, enabling a geometric growth in population and an increase in quality of life across the globe. Rapid population growth and rising incomes in developing countries, however, require ever larger amounts of A&F output. This chapter addresses robotics for A&F in the form of case studies where robotics is being successfully applied to solve well-identified problems. With respect to plant crops, the focus is on the in-field or in-farm tasks necessary to guarantee a quality crop and, generally speaking, end at harvest time. In the livestock domain, the focus is on breeding and nurturing, exploiting, harvesting, and slaughtering and processing. The chapter is organized in four main sections. The first one explains the scope, in particular, what aspects of robotics for A&F are dealt with in the chapter. The second one discusses the challenges and opportunities associated with the application of robotics to A&F. The third section is the core of the chapter, presenting twenty case studies that showcase (mostly) mature applications of robotics in various agricultural and forestry domains. The case studies are not meant to be comprehensive but instead to give the reader a general overview of how robotics has been applied to A&F in the last 10 years. The fourth section concludes the chapter with a discussion on specific improvements to current technology and paths to commercialization.
Similar content being viewed by others
Abbreviations
- 2-D:
-
two-dimensional
- 3-D:
-
three-dimensional
- 4-D:
-
four-dimensional
- A&F:
-
agriculture and forestry
- CCD:
-
charge-coupled device
- DOF:
-
degree of freedom
- GARNICS:
-
gardening with a cognitive system
- GLS:
-
global navigation satellite system
- GPS:
-
global positioning system
- HMI:
-
human–machine interaction
- N&G:
-
nursery and greenhouse
- NLIS:
-
national livestock identification scheme
- OCPP:
-
optimal coverage path planning
- PID:
-
proportional–integral–derivative
- PWM:
-
pulse-width modulation
- RTK:
-
real-time kinematics
- SLAM:
-
simultaneous localization and mapping
- TFP:
-
total factor productivity
- TOF:
-
time-of-flight
- UAV:
-
unmanned aerial vehicle
- WDVI:
-
weighted difference vegetation index
- WSN:
-
wireless sensor network
References
J.A. Foley, N. Ramankutty, K.A. Brauman, E.S. Cassidy, J.S. Gerber, M. Johnston, N.D. Mueller, C. O'Connell, D.K. Ray, P.C. West, C. Balzer, E.M. Bennett, S.R. Carpenter, J. Hill, C. Monfreda, S. Polasky, J. Rockström, J. Sheehan, S. Siebert, D. Tilman, D.P.M. Zaks: Solutions for a cultivated planet, Nature 478, 337–342 (2011)
A. Alleyne: Editor's note: Agriculture and information technology, Natl. Acad. Eng. Bridge, Issue Agric. Inf, Technol. 41(3), 3–4 (2011)
Global Harvest Initiative: The 2012 Global Agricultural Productivity Report, http://goo.gl/GBPvjK
J. Reid: The impact of mechanization on agriculture, Nat. Acad. Eng. Bridge, Issue Agric. Inf. Technol. 41(3), 22–29 (2011)
E.J. Van Henten: Greenhouse mechanization: State of the art and future perspective, Acta Hortic. 710, 55–69 (2006)
S.T. Nuske, S. Achar, T. Bates, S.G. Narasimhan, S. Singh: Yield estimation in vineyards by visual grape detection, IEEE/RSJ Int. Conf. Intell. Robots Syst., San Francisco (2011)
Q. Wang, S.T. Nuske, M. Bergerman, S. Singh: Automated crop yield estimation for apple orchards, Int. Symp. Exp. Robotics, Quebec City (2012)
J. Deere: Integrated AutoTrac System, http://goo.gl/CsxxfL
K. Gallardo, M. Taylor, H. Hinman: 2009 Cost estimates of establishing and producing gala apples in Washington, Washington State University Extension Fact Sheet FS005E, http://goo.gl/BHBZrb (2010)
B. Hamner, M. Bergerman, S. Singh: Results with autonomous vehicles operating in specialty crops, IEEE Int. Conf. Robotics Autom., St. Paul, MN (2012)
G. Giacomelli, N. Castilla, E.J. Van Henten, D.R. Mears, S. Sase: Innovation in greenhouse engineering, Acta Hortic. 801, 75–88 (2008)
C.W. Bac, E.J. Henten van, J. Hemming, Y. Edan: Harvesting robots for high-value crops: State-of-the-art review and challenges ahead, J. Field Robotics 31(6), 888–911 (2012)
J.C. Noordam, J. Hemming, C. Heerde van, F. Golbach, R. Soest van, E. Wekking: Automated rose cutting in greenhouses with 3D vision and robotics: Analysis of 3D vision techniques for stem detection, Acta Hortic. 691, 885–892 (2005)
T. Rath, M. Kawollek: Robotic harvesting of Gerbera Jamesonii based on detection and three-dimensional modeling of cut flower pedicels, Comput. Electron. Agric. 66, 85–92 (2009)
R. Berenstein, O.B. Shahar, A. Shapiro, Y. Edan: Grape clusters and foliage detection algorithms for autonomous selective vineyard sprayer, Intell. Serv. Robotics 3, 233–243 (2010)
E.J. Van Henten, B.A.J. Van Tuijl, G.J. Hoogakker, M.J. Van Der Weerd, J. Hemming, J.G. Kornet, J. Bontsema: An autonomous robot for de-leafing cucumber plants grown in a high-wire cultivation system, Biosyst. Eng. 94, 317–323 (2006)
M. Monta, N. Kondo, Y. Shibano: Agricultural robot in grape production system, Int. Conf. Robotics Autom. (1995)
Wikipedia: Controlled Traffic Farming, http://goo.gl/FODY04
J. Jin, L. Tang: Coverage path planning on three-dimensional terrain for arable farming, J. Field Robotics 28(3), 424–440 (2011)
D.C. Slaughter, D.K. Giles, D. Downey: Autonomous robotic weed control systems: A review, Comput. Electron. Agric. 61, 63–78 (2008)
F.K. Van Evert, J. Samsom, G. Polder, M. Vijn, H.-J. Dooren van, A. Lamaker, G.W.A.M. Heijden van der, C. Kempenaar, T. Zalm van der, B. Lotz: A robot to detect and control broad-leaved dock (Rumex obtusifolius L.) in grassland, J. Field Robotics 28, 264–277 (2011)
G. Polder, F.K. Van Evert, A. Lamaker, A. De Jong, G.W.A.M. Van der Heijden, L.A.P. Lotz, T. Van der Zalm, C. Kempenaar: Weed detection using textural image analysis, 6th Bienn. Conf. Eur. Fed. IT Agric. (EFITA), Glasgow (2007), available online at http://edepot.wur.nl/28203
F.K. Van Evert, G. Polder, G.W.A.M. Van der Heijden, C. Kempenaar, L.A.P. Lotz: Real-time, vision-based detection of Rumex obtusifolius L. in grassland, Weed Res. 49, 164–174 (2009)
H. Böhm, J. Finze: Überprüfung der Effektivität der maschinellen Ampferregulierung im Grünland mittels WUZI unter differenzierten Standortbedingungen [Testing the effectiveness of mechanical control of docks in grassland with the WUZI under a variety of conditions.], http://goo.gl/BVdqgy (2004)
A.T. Nieuwenhuizen, J.W. Hofstee, E.J. Henten van: Adaptive detection of volunteer potato plants in sugar beet fields, Precis. Agric. 11, 433–447 (2009)
A.T. Nieuwenhuizen, J.W. Hofstee, J.C. Zande van de, J. Meuleman, E.J. Henten van: Classification of sugar beet and volunteer potato reflection spectra with a neural network and statistical discriminant analysis to select discriminative wavelengths, Comput. Electron. Agric. 73, 146–153 (2010)
A.T. Nieuwenhuizen, J.W. Hofstee, E.J. Henten van: Performance evaluation of an automated detection and control system for volunteer potatoes in sugar beet fields, Biosyst. Eng. 107, 46–53 (2010)
T. Bakker, H. Wouters, K. Van Asselt, J. Bontsema, L. Tang, J. Müller, G. Van Straten: A vision based row detection system for sugar beet, Comput. Electron. Agric. 60(1), 87–95 (2008)
T. Bakker, K. Van Asselt, J. Bontsema, J. Müller, G. Van Straten: A path following algorithm for mobile robots, Auton. Robots 29(1), 85–97 (2010)
T. Bakker, K. Asselt van, J. Bontsema, J. Müller, G. Straten van: Autonomous navigation using a robot platform in a sugar beet field, Biosyst. Eng. 109(4), 357–368 (2011)
J. Katupitiya, R. Eaton, T. Yaqub: Systems engineering approach to agricultural automation: New developments, 1st Annual IEEE Syst. Conf. (2007) pp. 298–304
D. Kohanbash, A. Valada, G.A. Kantor: Irrigation control methods for wireless sensor network, Am. Soc. Agric. Biol. Eng. Annual Meeting (2012), available online at http://goo.gl/3NJyXb
S. Singh, M. Bergerman, J. Cannons, B. Grocholsky, B. Hamner, G. Holguin, L. Hull, V. Jones, G. Kantor, H. Koselka, G. Li, J. Owen, J. Park, W. Shi, J. Teza: Comprehensive automation for specialty crops: Year 1 results and lessons learned, J. Intell. Serv. Robotics, Special Issue Agric, Robotics 3(4), 245–262 (2010)
B. Davis: CMU-led automation program puts robots in the field, AUVSI's Unmanned Syst.: Mission Crit. 2, 38–40 (2012)
R. Lenain, J. Preynat, B. Thuilot, P. Avanzini, P. Martinet: Adaptive formation control of a fleet of mobile robots: Application to autonomous field operations, Int. Conf. Robotics Autom. (2010) pp. 1241–1246
A. Shapiro, E. Korkidi, A. Demri, R. Riemer, Y. Edan, O. Ben-Shahar: Toward elevated agrobotics: An autonomous field robot for spraying and pollinating date palm trees, J. Field Robotics 26(6/7), 572–590 (2009)
S. Foix, G. Alenyà, C. Torras: Lock-in time-of-flight (ToF) cameras: A survey, IEEE Sensors J. 11(9), 1917–1926 (2011)
R. Klose, J. Penlington, A. Ruckelshausen: Usability study of 3D time-of-flight cameras for automatic plant phenotyping, Workshop Comput. Image Anal. Agric. (2009) pp. 93–105
G. Alenyà, B. Dellen, S. Foix, C. Torras: Leaf segmentation from ToF data for robotized plant probing, IEEE Robotics Autom. Mag. 20(3), 50–59 (2013)
G. Alenyà, B. Dellen, S. Foix, C. Torras: Robotic leaf probing via segmentation of range data into surface patches, IROS Workshop Agric. Robotics, Villamura (2012)
G. Alenyà, B. Dellen, C. Torras: 3D modelling of leaves from color and ToF data for robotized plant measuring, IEEE Int. Conf. Robotics Autom., Shanghai (2011) pp. 3408–3414
B. Dellen, G. Alenyà, S. Foix, C. Torras: Segmenting color images into surface patches by exploiting sparse depth data, IEEE Workshop Appl. Comput. Vis., Kona (2011) pp. 591–598
E.J. Van Henten, B.A.J. Van Tuijl, J. Hemming, J.G. Kornet, J. Bontsema, E.A. Van Os: Field test of an autonomous cucumber picking robot, Biosyst. Eng. 86, 305–313 (2003)
E.J. Van Henten, J. Hemming, B.A.J. Van Tuijl, J.G. Kornet, J. Bontsema: Collision-free motion planning for a cucumber picking robot, Biosyst. Eng. 86, 135–144 (2003)
E.J. Van Henten, J. Hemming, B.A.J. Van Tuijl, J.G. Kornet, J. Meuleman, J. Bontsema, E.A. Van Os: An autonomous robot for harvesting cucumbers in greenhouses, Auton. Robots 13, 241–258 (2002)
S. Hayashi, K. Shigematsu, S. Yamamoto, K. Kobayashi, Y. Kohno, J. Kamata, M. Kurita: Evaluation of a strawberry-harvesting robot in a field test, Biosyst. Eng. 105, 160–171 (2010)
S. Hayashi, S. Yamamoto, S. Saito, Y. Ochiai, Y. Kohno, K. Yamamoto, J. Kamata, M. Kurita: Development of a movable strawberry-harvesting robot using a travelling platform, Proc. Int. Conf. Agric. Eng. CIGR-AgEng 2012, Valencia, Spain (2012)
F. Georgsson, T. Hellström, T. Johansson, K. Prorok, O. Ringdahl, U. Sandström: Development of an autonomous path tracking forest machine – a status report. In: Field and Service Robotics: Results of the 5th International Conference, ed. by P. Corke, S. Sukkarieh (Springer, Berlin, Heidelberg 2006) pp. 603–614
M. Miettinen, M. Öhman, A. Visala, P. Forsman: Simultaneous localization and mapping for forest harvesters, IEEE Int. Conf. Robotics Autom. (2007) pp. 517–522
J. Roßmann, M. Schluse, C. Schlette, A. Bücken, P. Krahwinkler, M. Emde: Realization of a highly accurate mobile robot system for multi purpose precision forestry applications, The 14th Int. Conf. Adv. Robotics (2009) pp. 133–138
J. Roßmann, P. Krahwinkler, A. Bücken: Mapping and navigation of mobile robots in natural environments. In: Advances in Robotics Research - Theory, Implementation, Application. German Workshop on Robotics, ed. by T. Kröger, F.M. Wahl (Springer, Berlin, Heidelberg 2009) pp. 43–52
S. Thrun, W. Burgard, D. Fox: Probabilistic Robotics (MIT Press, Cambridge 2005)
P. Krahwinkler, J. Roßmann, B. Sondermann: Support vector machine based decision tree for very high resolution multispectral forest mapping, IEEE Int. Geosci. Remote Sens. Symp. (2011) pp. 43–46
A. Bücken, J. Roßmann: From the volumetric algorithm for single-tree delineation towards a fully-automated process for the generation of virtual forests. In: Progress and New Trends in 3D Geoinformation Sciences. Lecture Notes in Geoinformation and Cartography, ed. by J. Pouliot, S. Daniel, F. Hubert, A. Zamyadi (Springer, Berlin, Heidelberg 2013) pp. 79–99
J. Roßmann, T. Jung, M. Rast: Developing virtual testbeds for mobile robotic applications in the woods and on the moon, The IEEE/RSJ 2010 Int. Conf. Intell. Robots Syst. (2010) pp. 4952–4957
A. Shiriaev, L. Freidovich, I. Manchester, U. Mettin, P. La Hera, S. Westerberg: Status of Smart Crane Lab Project: Modeling and Control for a Forwarder Crane, Department of Applied Physics and Electronics (Umeå University, Umeå 2008)
U. Mettin, P.X. La Hera, D.O. Morales, A.S. Shiriaev, L.B. Freidovich, S. Westerberg: Trajectory planning and time-independent motion control for a kinematically redundant hydraulic manipulator, Int. Conf. Adv. Robotics (2009)
U. Mettin, S. Westerberg, P.X. La Hera, A. Shiriaev: Analysis of human-operated motions and trajectory replanning for kinematically redundant manipulators, IEEE/RSJ Int. Conf. Intell. Robots Syst. (2009)
D. Morales, S. Westerberg, P. La Hera, U. Mettin, L. Freidovich, A. Shiriaev: Open-loop control experiments on driver assistance for crane forestry machines, IEEE Int. Conf. Robotics Autom. (2011)
A. Hansson, M. Servin: Semi-autonomous shared control of large-scale manipulator arms, Control Eng. Pract. 18(9), 1069–1076 (2010)
S. Westerberg, I. Manchester, U. Mettin, P. La Hera, A. Shiriaev: Virtual environment teleoperation of a hydraulic forestry crane, IEEE Int. Conf. Robotics Autom. (2008)
Y.-C. Park, A. Shiriaev, S. Westerberg, S. Lee: 3D log recognition and pose estimation for robotic forestry machine, IEEE Int. Conf. Robotics Autom. (2011)
NLIS: National Livestock Identification System, NSW Department of Primary Industries, http://goo.gl/WoHUi2
Lely home page: http://goo.gl/JCl8CI
Juno feed-pusher: http://goo.gl/V5H2Ye
Lely Vector feeder: http://goo.gl/dLiL3q
M. Dunn, J. Billingsley, N. Finch: Machine vision classification of animals, Mechatron. Mach. Vis. 2003: Future Trends: Proc. 10th Annual Conf. Mechatron. Mach. Vis. Pract. (Research Studies, Baldock 2003)
C. McCarthy, J. Billingsley, N. Finch, P. Murray, J. Gaughan: Cattle liveweight estimation using machine vision assessment of objective body measurements: First results, Proc. 28th Bienn. Aust. Soc. Anim. Production Conf., Vol. 28 (Australian Society of Animal Production, Wagga Wagga 2010)
Y. Wang, W. Yang, P. Winter, L.T. Walker: Non-contact sensing of hog weights by machine vision, Appl. Eng. Agric. 22(4), 577 (2006)
W. Zhu, F. Zhong, X. Li: Automated monitoring system of pig behavior based on RFID and ARM-LINUX, Third Int. Symp. Intell. Inf. Technol. Secur. Inf. (2010) pp. 431–434
S. Barry, D. Cook, R. Duthie, D. Clifford, D. Anderson: Future Surveillance Needs for Honeybee Biosecurity, RIRDC Publication No. 10/107, http://goo.gl/MUrPLo
Lely Astronaut A4 milking system: http://goo.gl/wYhUVH
J.P. Trevelyan: Sensing and control for sheep-shearing robots, IEEE J. Robotics Autom. 5(6), 716–727 (1989)
Robotics in the Poultry Industry, Poultry CRC: http://goo.gl/xH5vy6
A. J. Bubb, T. K. Driver, C. D. James: CASE STUDY - Redefining the cowboy: Precision pastoral decision making from remote monitoring and control of cattle, http://goo.gl/Vu0FlQ (2010)
R. Rankin: Further automation, Meat '93, Aust. Meat Ind. Res. Conf., Gold Coast. (1993), available online at http://goo.gl/lv2yjh
Performance Audit, Management of Project Fututech, The Meat Research Corporation, http://goo.gl/C5jMgm
Robotic Technologies Limited: RTL – Scott and Silver Fern Farms, http://goo.gl/xZxLOZ
Automated Boning Room System, Scott Group: http://goo.gl/0zFVqi
Chicken Whole Leg Deboning Machine, Mayekawa: http://goo.gl/xhj2Lf
Poultry slaughtering, Hyfoma: http://goo.gl/dzTfVT
Association for Unmanned Vehicle Systems International: The Economic Impact of Unmanned Aircraft Systems Integration in the United States, http://goo.gl/http://goo.gl/NS5EkT (2013)
J. Dong, L. Carlone, G.C. Rains, T. Coolong, F. Dellaert: 4D mapping of fields using autonomous ground and aerial vehicles, ASABE Int. Conf., Montreal (2014), Paper No. 141912258
F.K. Evert van, P. Voet van der, E. Valkengoed van, L. Kooistra, C. Kempenaar: Satellite-based herbicide rate recommendation for potato haulm killing, Eur. J. Agron. 43, 49–57 (2012)
C. Kempenaar, F.K. Evert van, T. Been: Use of vegetation indices in variable rate application of potato haulm killing herbicides, Proc. ICPA Conf., Sacramento, USA 2014 (2014)
C. Pugh, M. Jarman, S. Keyworth, J. Webber, I. Cameron: URSULA Agriculture, http://goo.gl/HzGkRT(2013)
S. Singh, S. Nuske, M. Bergerman, T. Bates, J. M. Peltier: Vineyard efficiency through high-resolution, spatiotemporal crop load measurement and management, http://goo.gl/iqXgWy
S. Blackmore: New concepts in agricultural automation, HGCA Conf. (2009)
J.L. Glancey, W.E. Kee: Engineering aspects of production and harvest mechanization for fresh and processed vegetables, HortTechnology 15, 76–79 (2005)
T. Burks, F. Villegas, M. Hannan, S. Flood, B. Sivaraman, V. Subramanian, J. Sikes: Engineering and horticultural aspects of robotic fruit harvesting: Opportunities and constraints, HortTechnology 15, 79–87 (2005)
K. Ellis, T.A. Baugher, K. Lewis: Use of survey instruments to assess technology adoption for tree fruit production, HortTechnology 20, 1043–1048 (2010)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Video-References
Video-References
-
:
-
Autonomous orchard tractors available from http://handbookofrobotics.org/view-chapter/56/videodetails/26
-
:
-
Autonomous orchard vehicle for specialty crop production available from http://handbookofrobotics.org/view-chapter/56/videodetails/91
-
:
-
Autonomous utility vehicle – R Gator available from http://handbookofrobotics.org/view-chapter/56/videodetails/93
-
:
-
Automatic plant probing available from http://handbookofrobotics.org/view-chapter/56/videodetails/95
-
:
-
Visual GPS – High accuracy localization for forestry machinery available from http://handbookofrobotics.org/view-chapter/56/videodetails/96
-
:
-
Smart Seeder: An autonomous high accuracy seed planter for broad acre crops available from http://handbookofrobotics.org/view-chapter/56/videodetails/131
-
:
-
A robot for harvesting sweet-pepper in greenhouses available from http://handbookofrobotics.org/view-chapter/56/videodetails/304
-
:
-
Ladybird: An intelligent farm robot for the vegetable industry available from http://handbookofrobotics.org/view-chapter/56/videodetails/305
-
:
-
An automated mobile platform for orchard scanning and for soil, yield, and flower mapping available from http://handbookofrobotics.org/view-chapter/56/videodetails/306
-
:
-
A mini unmanned aerial system for remote sensing in agriculture available from http://handbookofrobotics.org/view-chapter/56/videodetails/307
-
:
-
An autonomous cucumber harvester available from http://handbookofrobotics.org/view-chapter/56/videodetails/308
-
:
-
An autonomous robot for de-leafing cucumber plants available from http://handbookofrobotics.org/view-chapter/56/videodetails/309
-
:
-
The Intelligent Autonomous Weeder available from http://handbookofrobotics.org/view-chapter/56/videodetails/310
Rights and permissions
Copyright information
© 2016 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Bergerman, M., Billingsley, J., Reid, J., van Henten, E. (2016). Robotics in Agriculture and Forestry. In: Siciliano, B., Khatib, O. (eds) Springer Handbook of Robotics. Springer Handbooks. Springer, Cham. https://doi.org/10.1007/978-3-319-32552-1_56
Download citation
DOI: https://doi.org/10.1007/978-3-319-32552-1_56
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-32550-7
Online ISBN: 978-3-319-32552-1
eBook Packages: EngineeringEngineering (R0)