[go: up one dir, main page]

Skip to main content

Fuzzy Control-Based Function Synchronization of Unknown Chaotic Systems with Dead-Zone Input

  • Chapter
  • First Online:
Advances in Chaos Theory and Intelligent Control

Part of the book series: Studies in Fuzziness and Soft Computing ((STUDFUZZ,volume 337))

Abstract

This chapter deals with adaptive fuzzy control-based function vector synchronization between two chaotic systems with both unknown dynamic disturbances and input nonlinearities (dead-zone and sector nonlinearities). This synchronization scheme can be considered as a natural generalization of many existing projective synchronization systems (namely the function projective synchronization, the modified projective synchronization, the projective synchronization and so on). To effectively deal with the input nonlinearities, the control system is designed in a variable-structure framework. In order to approximate uncertain nonlinear functions, the adaptive fuzzy systems are incorporated in this control system. A Lyapunov approach is used to prove the boundedness of all signals as well as the exponential convergence of the corresponding synchronization errors to an adjustable region. The synchronization between two chaotic satellite systems is taken as an illustrative example to show the effectiveness of the proposed synchronization method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Azar AT, Serrano FE (2014) Robust IMC-PID tuning for cascade control systems with gain and phase margin specifications. Neural Comput Appl 25(5): 983–995. doi:10.1007/s00521-014-1560-x

    Google Scholar 

  2. Azar AT, Serrano FE (2015) Stabilization and control of mechanical systems with backlash. In: Azar AT, Vaidyanathan S (eds) Advanced intelligent control engineering and automation. advances in computational intelligence and robotics (ACIR) Book Series. IGI-Global, Hershey

    Google Scholar 

  3. Azar AT, Serrano FE (2015) Design and modeling of anti wind up PID controllers. In: Zhu Q, Azar AT (eds) Complex system modelling and control through intelligent soft computations. Studies in Fuzziness and Soft Computing, vol 319. Springer, Berlin, pp 1–44. doi:10.1007/978-3-319-12883-2_1

    Google Scholar 

  4. Azar AT, Serrano FE (2015) Adaptive sliding mode control of the Furuta pendulum. In Azar AT, Zhu Q (eds) Advances and applications in sliding mode control systems. Studies in computational intelligence, vol 576. Springer-Verlag GmbH, Berlin/Heidelberg, pp 1–42. doi:10.1007/978-3-319-11173-5_1

    Google Scholar 

  5. Azar AT, Serrano FE (2015) Deadbeat control for multivariable systems with time varying delays. In: Azar AT, Vaidyanathan S (eds) Chaos modeling and control systems design. Studies in computational intelligence, vol 581. Springer-Verlag GmbH, Berlin/Heidelberg, pp 97–132. doi:10.1007/978-3-319-13132-0_6

    Google Scholar 

  6. Azar AT, Vaidyanathan S (2015) Handbook of research on advanced intelligent control engineering and automation. In: Advances in computational intelligence and robotics (ACIR) Book Series. IGI Global, Hershey

    Google Scholar 

  7. Azar AT, Vaidyanathan S (2015) Computational intelligence applications in modeling and control. In: Studies in computational intelligence, vol 575. Springer, Berlin. ISBN: 978-3-319-11016-5

    Google Scholar 

  8. Azar AT, Vaidyanathan S (2015) Chaos modeling and control systems design. Studies in computational intelligence, vol 581. Springer, Berlin

    Google Scholar 

  9. Azar AT, Zhu Q (2015) Advances and applications in sliding mode control systems. In: Studies in computational intelligence, vol 576. Springer, Berlin. ISBN: 978-3-319-11172-8

    Google Scholar 

  10. Boulkroune A, Tadjine M, M’saad M, Farza M (2008) How to design a fuzzy adaptive control based on observers for uncertain affine nonlinear systems. Fuzzy Sets Syst 159:926–948

    Article  MathSciNet  MATH  Google Scholar 

  11. Boulkroune A, Tadjine M, M’saad M, Farza M (2009) Adaptive fuzzy controller for non-affine systems with zero dynamics. Int J Syst Sci 40(4):367–382

    Article  MathSciNet  MATH  Google Scholar 

  12. Boulkroune A, M’Saad M (2011) A fuzzy adaptive variable-structure control scheme for uncertain chaotic MIMO systems with sector nonlinearities and dead-zones. Expert Syst Appl 38(12):14744–14750

    Google Scholar 

  13. Boulkroune A, M’Saad M (2011) A practical projective synchronization approach for uncertain chaotic systems with dead-zone input. Commun Nonlinear Sci Numer Simul 16:4487–4500

    Google Scholar 

  14. Boulkroune A, M’Saad M, Farza M (2011) Adaptive fuzzy controller for multivariable nonlinear state time-varying delay systems subject to input nonlinearities. Fuzzy Sets Syst 164:45–65

    Google Scholar 

  15. Boulkroune A, M’Saad M, Farza M (2012) Adaptive fuzzy tracking control for a class of MIMO nonaffine uncertain systems. Neurocomputing 93:48–55

    Google Scholar 

  16. Boulkroune A, M’Saad M, Farza M (2012) Fuzzy approximation-based indirect adaptive controller for MIMO non-affine systems with unknown control direction. IET Control Theory Appl 17:2619–2629

    Google Scholar 

  17. Boulkroune A, M’Saad M (2012) Fuzzy adaptive observer-based projective synchronization for nonlinear systems with input nonlinearity. J Vib Control 18(3):437–450

    Google Scholar 

  18. Boulkroune A, M’Saad M (2012) On the design of observer-based fuzzy adaptive controller for nonlinear systems with unknown control gain sign. Fuzzy Sets Syst 201:71–85

    Google Scholar 

  19. Boulkroune A, Bouzeriba A, Hamel S, Bouden T (2014) Adaptive fuzzy control-based projective synchronization of uncertain non-affine chaotic systems. Complexity. doi:10.1002/cplx.21596

    Google Scholar 

  20. Boulkroune A, Bouzeriba A, Hamel S, Bouden T (2014) A projective synchronization scheme based on fuzzy adaptive control for unknown multivariable chaotic systems. Nonlinear Dyn 78(1):433–447

    Google Scholar 

  21. Boulkroune A, M’Saad M, Farza M (2014) State and output feedback fuzzy variable structure controllers for multivariable nonlinear systems subject to input nonlinearities. Int J Adv Manuf Technol 71:539–556

    Google Scholar 

  22. Bowonga S, Kakmenib M, Koinac R (2006) Chaos synchronization and duration time of a class of uncertain systems. Math Comput Simulat 71:212–228

    Article  MathSciNet  Google Scholar 

  23. Cailian C, Gang F, Xinping G (2005) An adaptive lag-synchronization method for time-delay chaotic systems. In: Proceedings of the American control conference, Portland, June 8–10, pp 4277–4282

    Google Scholar 

  24. Du HY, Zeng QS, Wang CH (2008) Function projective synchronization of different chaotic systems with uncertain parameters. Phys Lett A 372:5402–5410

    Article  MATH  Google Scholar 

  25. Farid Y, Moghaddam TV (2014) Generalized projective synchronization of chaotic satellites problem using linear matrix inequality. Int J Dynam Control 2:577–586

    Article  Google Scholar 

  26. Hwang E, Hyun C, Kim E, Park M (2009) Fuzzy model based adaptive synchronization of uncertain chaotic systems: robust tracking control approach. Phys Lett A 373:1935–1939

    Article  MATH  Google Scholar 

  27. Kemih K, Kemiha A, Ghanes M (2009) Chaotic attitude control of satellite using impulsive control. Chaos Solitons Fractals 42:735–744

    Article  MATH  Google Scholar 

  28. Li G (2006) Projective synchronization of chaotic system using backstepping control. Chaos Solitons Fractals 29:490–598

    Article  MATH  Google Scholar 

  29. Li GH (2007) Generalized projective synchronization between Lorenz system and Chen’s system. Chaos Solitons Fractals 32:1454–1458

    Google Scholar 

  30. Li GH (2007) Modified projective synchronization of chaotic system. Chaos Solitons Fractals 32:1786–1790

    Google Scholar 

  31. Li N, Xiang W, Li H (2012) Function vector synchronization of uncertain chaotic systems with nonlinearities and dead-zones. J Conmput Inf Syst 8:9491–9498

    Google Scholar 

  32. Luo RZ (2008) Adaptive function projective synchronization of Rössler hyperchaotic system with uncertain parameters. Phys Lett A 372:3667–3671

    Article  MathSciNet  MATH  Google Scholar 

  33. Mekki H, Boukhetala D, Azar AT (2015) Sliding modes for fault tolerant control. In: Azar AT, Zhu Q (eds) Advances and applications in sliding mode control systems. Studies in Computational Intelligence book Series, vol 576. Springer-Verlag GmbH, Berlin/Heidelberg, pp 407–433. doi:10.1007/978-3-319-11173-5_15

    Google Scholar 

  34. Ning L, Heng L, Wei X (2012) Fuzzy adaptive tracking control of uncertain chaotic system with input perturbance and nonlinearity. Acta Phys 61(23): 230505. doi:10.7498/aps.61.230505

  35. Pikovsky AS, Rosenblum MG, Osipov GV, Kurths J (1997) Phase synchronization of chaotic oscillators by external driving. Phys D 104:219–238

    Article  MathSciNet  MATH  Google Scholar 

  36. Saaban AB, Ibrahim AB, Shahzad M, Ahmad I (2014) Identical synchronization of a new chaotic system via nonlinear control and linear active control techniques: a comparative analysis. Int J Hybrid Inf Technol 7(1):211–224

    Article  Google Scholar 

  37. Sadaoui D, Boukabou A, Merabtine N, Benslama M (2011) Predictive synchronization of chaotic satellites systems. Expert Syst Appl 38(7):9041–9045

    Google Scholar 

  38. Sudheer KS, Sabir M (2009) Adaptive modified function projective synchronization between hyperchaotic Lorenz system and hyperchaotic Lu system with uncertain parameters. Phys Lett A 373:3743–3748

    Article  MathSciNet  MATH  Google Scholar 

  39. Shyu K-K, Liu W-J, Hsu K-C (2005) Design of large-scale time-delayed systems with dead-zone input via variable structure control. Automatica 41:1239–1246

    Article  MathSciNet  MATH  Google Scholar 

  40. Vaidyanathan S, Azar AT (2015) Anti-synchronization of identical chaotic systems using sliding mode control and an application to Vaidyanathan-Madhavan chaotic systems. In: Azar AT, Zhu Q (eds) Advances and applications in sliding mode control systems. Studies in computational intelligence book series, vol 576. Springer-Verlag GmbH, Berlin/Heidelberg, pp 527–547. doi:10.1007/978-3-319-11173-5_19

    Google Scholar 

  41. Vaidyanathan S, Azar AT (2015) Hybrid synchronization of identical chaotic systems using sliding mode control and an application to Vaidyanathan chaotic systems. In: Azar AT, Zhu Q (eds) Advances and applications in sliding mode control systems. Studies in computational intelligence book series, vol 576. Springer-Verlag GmbH, Berlin/Heidelberg, pp 549–569. doi:10.1007/978-3-319-11173-5_20

    Google Scholar 

  42. Vaidyanathan S, Azar AT (2015) Analysis, control and synchronization of a nine-term 3-D novel chaotic system. In: Azar AT, Vaidyanathan S (eds) Chaos modeling and control systems design. Studies in computational intelligence, vol 581. Springer-Verlag GmbH, Berlin/Heidelberg, pp 3–17. doi:10.1007/978-3-319-13132-0_1

    Google Scholar 

  43. Vaidyanathan S, Azar AT (2015) Analysis and control of a 4-D novel hyperchaotic system. In: Azar AT, Vaidyanathan S (eds) Chaos modeling and control systems design. Studies in computational intelligence, vol 581. Springer-Verlag GmbH, Berlin/Heidelberg, pp 19–38. doi:10.1007/978-3-319-13132-0_2

    Google Scholar 

  44. Vaidyanathan S, Idowu BA, Azar AT (2015) Backstepping controller design for the global chaos synchronization of Sprott’s jerk systems. In: Azar AT, Vaidyanathan S (eds) Chaos modeling and control systems design. Studies in computational intelligence, vol 581. Springer-Verlag GmbH, Berlin/Heidelberg, pp 39–58. doi:10.1007/978-3-319-13132-0_3

    Google Scholar 

  45. Vargas JA, Grzeidak E, Hemerly EM (2015) Robust adaptive synchronization of a hyperchaotic finance system. Nonlinear Dyn 80(1–2):239–248

    Article  MathSciNet  MATH  Google Scholar 

  46. Wang J, Chen L, Deng B (2009) Synchronization of ghostburster neuron in external electrical stimulation via H\(\infty \) variable universe fuzzy adaptive control. Chaos Solitons Fractals 39(5):2076–2085

    Article  Google Scholar 

  47. Wang LX (1994) Adaptive fuzzy systems and control: design and stability analysis. Prentice-Hall, Englewood Cliffs

    Google Scholar 

  48. Wang YW, Guan ZH (2006) Generalized synchronization of continuous chaotic systems. Chaos Solitons Fractals 27:97–101

    Article  MATH  Google Scholar 

  49. Yan J, Li C (2005) Generalized projective synchronization of a unified chaotic system. Chaos Solitons Fractals 26:1119–1124

    Article  MATH  Google Scholar 

  50. Yu Y, Li H (2010) Adaptive generalized function projective synchronization of uncertain chaotic systems. Nonlinear Anal: Real World Appl 11:2456–2464

    Article  MathSciNet  MATH  Google Scholar 

  51. Zhu Q, Azar AT (2015) Complex system modelling and control through intelligent soft computations. In: Studies in fuzziness and soft computing, vol 319. Springer, Berlin. ISBN: 978-3-319-12882-5

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdesselem Boulkroune .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Boulkroune, A., Hamel, S., Azar, A.T., Vaidyanathan, S. (2016). Fuzzy Control-Based Function Synchronization of Unknown Chaotic Systems with Dead-Zone Input. In: Azar, A., Vaidyanathan, S. (eds) Advances in Chaos Theory and Intelligent Control. Studies in Fuzziness and Soft Computing, vol 337. Springer, Cham. https://doi.org/10.1007/978-3-319-30340-6_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-30340-6_29

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-30338-3

  • Online ISBN: 978-3-319-30340-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics