[go: up one dir, main page]

Skip to main content

Stability of Nanofluids

  • Chapter
  • First Online:
Engineering Applications of Nanotechnology

Abstract

Nanofluids are the dilute suspensions of nanomaterials with distinctive and enhanced features. Nanofluids can be used in a variety of industrial applications because of improved thermophysical properties. Stability of nanofluids is the only quandary factor which decreases the efficiency of such smart fluids in engineering applications. The information and studies on interaction of nanomaterials with the liquid have significant importance toward their usage in industrial applications. Agglomeration among particles is a common issue due to interactive forces, which effects the dispersion, rheology, and overall performance of nanosuspensions. Characterization of nanofluids plays an important role to evaluate the stability of nanofluids. The effect of agglomeration on the stability of nanofluids can be reduced by introducing different mechanical and chemical techniques to prolong dispersion of suspended particles in liquids. Complete understanding on the stability of nanofluids can lead to the preparation of different combinations of stable nanofluids with enhanced properties for variety of applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

a :

Particle radius

\(a_{1}\) :

Particle radius of sphere 1

\(a_{2}\) :

Particle radius of sphere 2

A :

Hamaker constant

\(A_{1}\) :

Darcy’s permeability constant

\(A_{2}\) :

Modified permeability constant

d :

Average diameter of particle, nm

\(d_{0}\) :

Reference average particle diameter, 100 nm

\(D_{P}\) :

Diameter of particle

g :

Gravitational constant

h :

Surface-to-surface separation distance

H :

Height of sediment due to consolidation

\(H_{S}\) :

Height of sediment/bed height

\(H_{T}\) :

Total height of sample

\(H_{o}\) :

Initial height of the sediment due to consolidation

\(H_{\infty }\) :

Equilibrium height of the sediment due to consolidation

K :

Thickness of electrical double layer

n :

Empirical constant

\(pH_{f}\) :

pH of base fluid

\(pH_{nf}\) :

pH of nanofluids

\(P_{L}\) :

Hydraulic excess pressure

T :

Absolute temperature, K

\(T_{0}\) :

Reference temperature, 273 K

\(T_{C}\) :

Consolidation time factor

u :

Relative velocity of liquid to solids

\(U_{C}\) :

Average consolidation ratio

v :

Terminal settling velocity

\(v_{R}\) :

Potential energy per unit area between two spheres or plates

\(V_{A}\) :

Energy due to attractive forces

\(V_{B}\) :

Born interaction potential energy

\(V_{R}\) :

Electrical double-layer interaction potential energy

\(V_{T}\) :

Total interaction potential

x :

Distance

\(z_{1 - 8}\) :

Regression constants

\(\sigma_{c}^{{}}\) :

Collision diameter

\(\rho_{P}\) :

Density of particles

\(\rho_{f}\) :

Density of fluid

\(\mu\) :

Viscosity of liquid

\(\varepsilon\) :

Porosity

\(\omega\) :

Volume of solids per unit cross-sectional area

\(\varphi\) :

Volumetric concentration of particles

\(\psi_{o}\) :

Particle surface potential

References

  • Ahuja, A. S. (1975a). Augmentation of heat transport in laminar flow of polystyrene suspensions. I. Experiments and results. Journal of Applied Physics, 46(8), 3408–3416.

    Article  Google Scholar 

  • Ahuja, A. S. (1975b). Measurement of thermal conductivity of (neutrally and nonneutrally buoyant) stationary suspensions by the unsteady-state method. Journal of Applied Physics, 46(2), 747–755.

    Article  Google Scholar 

  • Alberola, J. A., Mondragón, R., Juliá, J. E., Hernández, L., & Cabedo, L. (2014). Characterization of halloysite-water nanofluid for heat transfer applications. Applied Clay Science, 99, 54–61. doi:10.1016/j.clay.2014.06.012.

    Article  Google Scholar 

  • Allouni, Z. E., Cimpan, M. R., Høl, P. J., Skodvin, T., & Gjerdet, N. R. (2009). Agglomeration and sedimentation of TiO2 nanoparticles in cell culture medium. Colloids and Surfaces B: Biointerfaces, 68(1), 83–87. doi:10.1016/j.colsurfb.2008.09.014.

    Article  Google Scholar 

  • Barrett, T. R., Robinson, S., Flinders, K., Sergis, A., & Hardalupas, Y. (2013). Investigating the use of nanofluids to improve high heat flux cooling systems. Fusion Engineering and Design, 88(9–10), 2594–2597. doi:10.1016/j.fusengdes.2013.03.058.

    Article  Google Scholar 

  • Choi, S. U. S. (1995). Enhancement thermal conductivity of fluids with nanoparticles. FED 231.

    Google Scholar 

  • Choi, U. S., France, D. M., & Knodel, B. D. (1992). Impact of advanced fluids on costs of district cooling systems. In Proceedings of 83rd Annual International District Heating and Cooling Association Conference. Danvers, MA.

    Google Scholar 

  • Derjaguin, B. (1934). Friction and adhesion. IV. The theory of adhesion of small particles. Kolloid Zeits, 69, 155–164.

    Article  Google Scholar 

  • Duangthongsuk, W., & Wongwises, S. (2015). A comparison of the heat transfer performance and pressure drop of nanofluid-cooled heat sinks with different miniature pin fin configurations. Experimental Thermal and Fluid Science, 69, 111–118. doi:10.1016/j.expthermflusci.2015.07.019.

    Article  Google Scholar 

  • Eastman, J. A., Choi, U. S., Li, S., Soyez, G., Thompson, L. J., & DiMelfi, R. J. (1999). Novel thermal properties of nanostructured materials. Materials Science Forum, 312, 629–634.

    Article  Google Scholar 

  • Eastman, J. A., Choi, S. U. S., Li, S., Yu, W., & Thompson, L. J. (2001). Anomalously increased effective thermal conductivities of ethylene glycol-based nanofluids containing copper nanoparticles. Applied Physics Letters, 78(6), 718–720.

    Article  Google Scholar 

  • Elimelech, M., Gregory, J., Jia, X. (2013). Particle deposition and aggregation: Measurement, modelling and simulation. Butterworth-Heinemann,

    Google Scholar 

  • Fang, B., Zhang, C., Zhang, W., & Wang, G. (2009). A novel hydrazine electrochemical sensor based on a carbon nanotube-wired ZnO nanoflower-modified electrode. Electrochimica Acta, 55(1), 178–182. doi:10.1016/j.electacta.2009.08.036.

    Article  Google Scholar 

  • Farbod, M., Kouhpeymani asl, R., & Noghreh abadi, A. R. (2015). Morphology dependence of thermal and rheological properties of oil-based nanofluids of CuO nanostructures. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 474, 71–75. doi:10.1016/j.colsurfa.2015.02.049.

    Article  Google Scholar 

  • Feng, X., Ma, H., Huang, S., Pan, W., Zhang, X., Tian, F., et al. (2006). Aqueous-organic phase-transfer of highly stable gold, silver, and platinum nanoparticles and new route for fabrication of gold nanofilms at the oil/water interface and on solid supports. The Journal of Physical Chemistry B, 110(25), 12311–12317.

    Article  Google Scholar 

  • Fontes, D. H., Ribatski, G., & Bandarra Filho, E. P. (2015). Experimental evaluation of thermal conductivity, viscosity and breakdown voltage AC of nanofluids of carbon nanotubes and diamond in transformer oil. Diamond and Related Materials, 58, 115–121. doi:10.1016/j.diamond.2015.07.007.

    Article  Google Scholar 

  • Ho, C. J., Liu, W. K., Chang, Y. S., & Lin, C. C. (2010). Natural convection heat transfer of alumina-water nanofluid in vertical square enclosures: An experimental study. International Journal of Thermal Sciences, 49(8), 1345–1353. doi:10.1016/j.ijthermalsci.2010.02.013.

    Article  Google Scholar 

  • Huang, L., Li, D.-Q., Lin, Y.-J., Wei, M., Evans, D. G., & Duan, X. (2005). Controllable preparation of Nano-MgO and investigation of its bactericidal properties. Journal of Inorganic Biochemistry, 99(5), 986–993. doi:10.1016/j.jinorgbio.2004.12.022.

    Article  Google Scholar 

  • Hwang, Y., Lee, J.-K., Lee, J.-K., Jeong, Y.-M., S-i, Cheong, Ahn, Y.-C., et al. (2008). Production and dispersion stability of nanoparticles in nanofluids. Powder Technology, 186(2), 145–153. doi:10.1016/j.powtec.2007.11.020.

    Article  Google Scholar 

  • Ilyas, S. U., Pendyala, R., & Marneni, N. (2013). Settling characteristics of alumina nanoparticles in ethanol-water mixtures. Applied Mechanics and Materials, 372, 143–148.

    Article  Google Scholar 

  • Ilyas, S. U., Pendyala, R., & Marneni, N. (2014a). Preparation, sedimentation, and agglomeration of nanofluids. Chemical Engineering and Technology, 37(12), 2011–2021.

    Article  Google Scholar 

  • Ilyas, S., Pendyala, R., & Marneni, N. (2014b). Dispersion behaviour and agglomeration effects of zinc oxide nanoparticles in ethanol–water mixtures. Materials Research Innovations, 18(S6), S6-179–S176-183.

    Article  Google Scholar 

  • Ilyas, S. U., Pendyala, R., Shuib, A., & Marneni, N. (2014c). A review on the viscous and thermal transport properties of nanofluids. Advanced Materials Research, 917, 18–27.

    Article  Google Scholar 

  • Iritani, E., Hashimoto, T., & Katagiri, N. (2009). Gravity consolidation–sedimentation behaviors of concentrated TiO2 suspension. Chemical Engineering Science, 64(21), 4414–4423. doi:10.1016/j.ces.2009.07.013.

    Article  Google Scholar 

  • Iyahraja S, Rajadurai JS (2015) Stability of Aqueous Nanofluids Containing PVP-Coated Silver Nanoparticles. Arabian Journal for Science and Engineering, 1–8. doi:10.1007/s13369-015-1707-9.

  • Joni, I. M., Purwanto, A., Iskandar, F., & Okuyama, K. (2009). Dispersion stability enhancement of titania nanoparticles in organic solvent using a bead mill process. Industrial and Engineering Chemistry Research, 48(15), 6916–6922.

    Article  Google Scholar 

  • Kao, M.-J., Chang, H., Wu, Y.-Y., Tsung, T.-T., & Lin, H.-M. (2007a). Producing aluminum-oxide brake nanofluids using plasma charging system. Journal of the Chinese Society of Mechanical Engineers, 28(2), 123–131.

    Google Scholar 

  • Kao, M. J., Lo, C. H., Tsung, T. T., Wu, Y. Y., Jwo, C. S., & Lin, H. M. (2007b). Copper-oxide brake nanofluid manufactured using arc-submerged nanoparticle synthesis system. Journal of Alloys and Compounds, 434–435, 672–674. doi:10.1016/j.jallcom.2006.08.305.

    Article  Google Scholar 

  • Kole, M., & Dey, T. K. (2010). Viscosity of alumina nanoparticles dispersed in car engine coolant. Experimental Thermal and Fluid Science, 34(6), 677–683. doi:10.1016/j.expthermflusci.2009.12.009.

    Article  Google Scholar 

  • Kole, M., & Dey, T. K. (2012). Effect of prolonged ultrasonication on the thermal conductivity of ZnO–ethylene glycol nanofluids. Thermochimica Acta, 535, 58–65. doi:10.1016/j.tca.2012.02.016.

    Article  Google Scholar 

  • Konakanchi, H., Vajjha, R. S., Chukwu, G. A., & Das, D. K. (2014). Measurements of pH of three nanofluids and development of new correlations. Heat Transfer Engineering, 36(1), 81–90. doi:10.1080/01457632.2014.906286.

    Article  Google Scholar 

  • Kumar, A., Joshi, H., Pasricha, R., Mandale, A. B., & Sastry, M. (2003). Phase transfer of silver nanoparticles from aqueous to organic solutions using fatty amine molecules. Journal of Colloid and Interface Science, 264(2), 396–401. doi:10.1016/S0021-9797(03)00567-8.

    Article  Google Scholar 

  • Kwak, K., & Kim, C. (2005). Viscosity and thermal conductivity of copper oxide nanofluid dispersed in ethylene glycol. Korea-Australia Rheology Journal, 17(2), 35–40.

    Google Scholar 

  • Lee, J.-H., Hwang, K. S., Jang, S. P., Lee, B. H., Kim, J. H., Choi, S. U. S., et al. (2008). Effective viscosities and thermal conductivities of aqueous nanofluids containing low volume concentrations of Al2O3 nanoparticles. International Journal of Heat and Mass Transfer, 51(11–12), 2651–2656.

    Article  Google Scholar 

  • Li, D., Hong, B., Fang, W., Guo, Y., & Lin, R. (2010). Preparation of well-dispersed silver nanoparticles for oil-based nanofluids. Industrial and Engineering Chemistry Research, 49(4), 1697–1702. doi:10.1021/ie901173h.

    Article  Google Scholar 

  • Li, J., Zhang, Z., Zou, P., Grzybowski, S., & Zahn, M. (2012). Preparation of a vegetable oil-based nanofluid and investigation of its breakdown and dielectric properties. Electrical Insulation Magazine, IEEE, 28(5), 43–50. doi:10.1109/MEI.2012.6268441.

    Article  Google Scholar 

  • LotfizadehDehkordi, B., Ghadimi, A., & Metselaar, H. S. (2013). Box-Behnken experimental design for investigation of stability and thermal conductivity of TiO2 nanofluids. Journal of Nanoparticle Research, 15(1), 1–9.

    Article  Google Scholar 

  • Mahbubul, I. M., Chong, T. H., Khaleduzzaman, S. S., Shahrul, I. M., Saidur, R., Long, B. D., et al. (2014). Effect of ultrasonication duration on colloidal structure and viscosity of alumina-water nanofluid. Industrial and Engineering Chemistry Research, 53(16), 6677–6684. doi:10.1021/ie500705j.

    Article  Google Scholar 

  • Maxwell, J. C. (1873). Art. 314. Medium in which small spheres are uniformly disseminated, Chapter IX. Conduction through heterogeneous media. A treatise on electricity and magnetism, 1, 365–366.

    Google Scholar 

  • Munkhbayar, B., Nine, M. J., Jeoun, J., Bat-Erdene, M., Chung, H., & Jeong, H. (2013). Influence of dry and wet ball milling on dispersion characteristics of the multi-walled carbon nanotubes in aqueous solution with and without surfactant. Powder Technology, 234, 132–140. doi:10.1016/j.powtec.2012.09.045.

    Article  Google Scholar 

  • Nayak, A. K., Gartia, M. R., & Vijayan, P. K. (2009). Thermal–hydraulic characteristics of a single-phase natural circulation loop with water and Al2O3 nanofluids. Nuclear Engineering and Design, 239(3), 526–540. doi:10.1016/j.nucengdes.2008.11.014.

    Article  Google Scholar 

  • Nematolahi, M., Behzadinejad, B., & Golestani, (2015). A feasibility study of using nanofluids as a neutron absorber in reactor emergency core cooling system. International Journal of Hydrogen Energy,. doi:10.1016/j.ijhydene.2015.03.159.

    Google Scholar 

  • Nguyen, C. T., Desgranges, F., Galanis, N., Roy, G., Maré, T., Boucher, S., et al. (2008). Viscosity data for Al2O3–water nanofluid—hysteresis: Is heat transfer enhancement using nanofluids reliable? International Journal of Thermal Sciences, 47(2), 103–111. doi:10.1016/j.ijthermalsci.2007.01.033.

    Article  Google Scholar 

  • Otanicar, T. P., Phelan, P. E., Prasher, R. S., Rosengarten, G., & Taylor, R. A. (2010). Nanofluid-based direct absorption solar collector. Journal of renewable and sustainable energy, 2(3), 033102.

    Article  Google Scholar 

  • Pastoriza-Gallego, M. J., Casanova, C., Legido, J. L., & Piñeiro, M. M. (2011). CuO in water nanofluid: Influence of particle size and polydispersity on volumetric behaviour and viscosity. Fluid Phase Equilibria, 300(1–2), 188–196. doi:10.1016/j.fluid.2010.10.015.

    Article  Google Scholar 

  • Pastoriza-Gallego, M. J., Lugo, L., Cabaleiro, D., Legido, J. L., & Piñeiro, M. M. (2014). Thermophysical profile of ethylene glycol-based ZnO nanofluids. The Journal of Chemical Thermodynamics, 73, 23–30. doi:10.1016/j.jct.2013.07.002.

    Article  Google Scholar 

  • Pendyala, R., Chong, J. L., & Ilyas, S. U. (2015). CFD analysis of heat transfer performance in a car radiator with nanofluids as coolants. Chemical Engineering Transactions, 45, 1261–1266. doi:10.3303/CET1545211.

    Google Scholar 

  • Pietsch, W. (2005). Agglomeration in industry. Wiley-VCH-Verlag.

    Google Scholar 

  • Rehman, H., Batmunkh, M., Jeong, H., & Chung, H. (2012). Sedimentation study and dispersion behavior of Al2O3–H2O nanofluids with dependence of time. Advanced Science Letters, 6(1), 96–100. doi:10.1166/asl.2012.2135.

    Article  Google Scholar 

  • Ruckenstein, E., & Prieve, D. C. (1976). Adsorption and desorption of particles and their chromatographic separation. AIChE Journal, 22(2), 276–283.

    Article  Google Scholar 

  • Said, Z., Sajid, M. H., Alim, M. A., Saidur, R., & Rahim, N. A. (2013). Experimental investigation of the thermophysical properties of AL2O3-nanofluid and its effect on a flat plate solar collector. International Communications in Heat and Mass Transfer, 48, 99–107. doi:10.1016/j.icheatmasstransfer.2013.09.005.

    Article  Google Scholar 

  • Sabliov, C. M., & Astete, C. E. (2015). 17 Polymeric nanoparticles for food applications. Nanotechnology and Functional Foods: Effective Delivery of Bioactive Ingredients 272.

    Google Scholar 

  • Sekhar, R. Y., Sharma, K. V., Karupparaj, T. R., & Chiranjeevi, C. (2013). Heat transfer enhancement with Al2O3 nanofluids and twisted tapes in a pipe for solar thermal applications. Procedia Engineering, 64, 1474–1484. doi:10.1016/j.proeng.2013.09.229.

    Article  Google Scholar 

  • Sharma, T., Mohana Reddy, A. L., Chandra, T. S., & Ramaprabhu, S. (2008). Development of carbon nanotubes and nanofluids based microbial fuel cell. International Journal of Hydrogen Energy, 33(22), 6749–6754. doi:10.1016/j.ijhydene.2008.05.112.

    Article  Google Scholar 

  • Shirato, M., Kato, H., Kobayashi, K., & Sakazaki, H. (1970). Analysis of settling of thick slurries fue to consolidation. Journal of Chemical Engineering of Japan, 3(1), 98–104.

    Article  Google Scholar 

  • Singh, A., & Raykar, V. (2008). Microwave synthesis of silver nanofluids with polyvinylpyrrolidone (PVP) and their transport properties. Colloid and Polymer Science, 286(14–15), 1667–1673. doi:10.1007/s00396-008-1932-9.

    Article  Google Scholar 

  • Smirnov, V. V., Kostritsa, S. A., Kobtsev, V. D., Titova, N. S., & Starik, A. M. (2015). Experimental study of combustion of composite fuel comprising n-decane and aluminum nanoparticles. Combustion and Flame,. doi:10.1016/j.combustflame.2015.06.011.

    Google Scholar 

  • Sohel, M. R., Saidur, R., Khaleduzzaman, S. S., & Ibrahim, T. A. (2015). Cooling performance investigation of electronics cooling system using Al2O3–H2O nanofluid. International Communications in Heat and Mass Transfer, 65, 89–93. doi:10.1016/j.icheatmasstransfer.2015.04.015.

    Article  Google Scholar 

  • Sonage, B., & Mohanan, P. (2015). Miniaturization of automobile radiator by using zinc-water and zinc oxide-water nanofluids. Journal of Mechanical Science and Technology, 29(5), 2177–2185.

    Article  Google Scholar 

  • Srinivas, V., Moorthy, C. V., Dedeepya, V., Manikanta, P., Satish, V. (2015). Nanofluids with CNTs for automotive applications. Heat and Mass Transfer 1–12.

    Google Scholar 

  • Sundar, L. S., Naik, M. T., Sharma, K. V., Singh, M. K., & Siva, R. T. C. (2012). Experimental investigation of forced convection heat transfer and friction factor in a tube with Fe3O4 magnetic nanofluid. Experimental Thermal and Fluid Science, 37, 65–71. doi:10.1016/j.expthermflusci.2011.10.004.

    Article  Google Scholar 

  • Suresh, S., Venkitaraj, K. P., Selvakumar, P., & Chandrasekar, M. (2012). Effect of Al2O3–Cu/water hybrid nanofluid in heat transfer. Experimental Thermal and Fluid Science, 38, 54–60. doi:10.1016/j.expthermflusci.2011.11.007.

    Article  Google Scholar 

  • Teng, T.-P., Hsu, Y.-C., Wang, W.-P., & Fang, Y.-B. (2015). Performance assessment of an air-cooled heat exchanger for multiwalled carbon nanotubes-water nanofluids. Applied Thermal Engineering, 89, 346–355. doi:10.1016/j.applthermaleng.2015.06.042.

    Article  Google Scholar 

  • Verwey, E. J. W., Overbeek, J. T. G., & Ness K. V. (1948). Theory of the stability of lyophobic colloids—The interaction of soil particles having an electrical double layer. Elsevier.

    Google Scholar 

  • Wang, X.-Q., & Mujumdar, A. S. (2007). Heat transfer characteristics of nanofluids: a review. International Journal of Thermal Sciences, 46(1), 1–19. doi:10.1016/j.ijthermalsci.2006.06.010.

    Article  Google Scholar 

  • Witharana, S., Palabiyik, I., Musina, Z., & Ding, Y. (2013). Stability of glycol nanofluids—The theory and experiment. Powder Technology, 239, 72–77. doi:10.1016/j.powtec.2013.01.039.

    Article  Google Scholar 

  • Xuan, Y., & Li, Q. (2000). Heat transfer enhancement of nanofluids. International Journal of Heat and Fluid Flow, 21(1), 58–64. doi:10.1016/S0142-727X(99)00067-3.

    Article  Google Scholar 

  • Yu, W., Xie, H. (2012). A Review on Nanofluids: Preparation, Stability Mechanisms, and Applications. Journal of Nanomaterials 2012. doi:10.1155/2012/435873.

  • Yu, W., Xie, H., Chen, L., & Li, Y. (2010). Enhancement of thermal conductivity of kerosene-based Fe3O4 nanofluids prepared via phase-transfer method. Colloids and surfaces A: Physicochemical and engineering aspects, 355(1–3), 109–113. doi:10.1016/j.colsurfa.2009.11.044.

    Article  Google Scholar 

  • Yu-zhen, L., Xiao-xin, L., Yue-fan, D., Fo-chi, W., Cheng-rong, L. (2010). Preparation and breakdown strength of TiO2 fluids based on transformer oil. In Proceedings of 2010 Annual Report Conference on Electrical Insulation and Dielectric Phenomena (CEIDP) (pp. 1–3), 17–20 Oct 2010. doi:10.1109/CEIDP.2010.5723974.

  • Zhang, J., Diao, Y. H., Zhao, Y. H., Tang, X., Yu, W. J., & Wang, S. (2013). Experimental study on the heat recovery characteristics of a new-type flat micro-heat pipe array heat exchanger using nanofluid. Energy Conversion and Management, 75, 609–616. doi:10.1016/j.enconman.2013.08.003.

    Article  Google Scholar 

  • Zhang, L., Ding, Y., Povey, M., & York, D. (2008). ZnO nanofluids—A potential antibacterial agent. Progress in Natural Science, 18(8), 939–944. doi:10.1016/j.pnsc.2008.01.026.

    Article  Google Scholar 

  • Zhu, D., Li, X., Wang, N., Wang, X., Gao, J., & Li, H. (2009). Dispersion behavior and thermal conductivity characteristics of Al2O3–H2O nanofluids. Current Applied Physics, 9(1), 131–139. doi:10.1016/j.cap.2007.12.008.

    Article  Google Scholar 

  • Zhu, H. T., Zhang, C. Y., Tang, Y. M., & Wang, J. X. (2007). Novel synthesis and thermal conductivity of CuO nanofluid. The Journal of Physical Chemistry C, 111(4), 1646–1650. doi:10.1021/jp065926t.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajashekhar Pendyala .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Ilyas, S.U., Pendyala, R., Marneni, N. (2017). Stability of Nanofluids. In: Korada, V., Hisham B Hamid, N. (eds) Engineering Applications of Nanotechnology. Topics in Mining, Metallurgy and Materials Engineering. Springer, Cham. https://doi.org/10.1007/978-3-319-29761-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-29761-3_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-29759-0

  • Online ISBN: 978-3-319-29761-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics