[go: up one dir, main page]

Skip to main content

On Rule Placement for Multi-path Routing in Software-Defined Networks

  • Conference paper
  • First Online:
Collaborative Computing: Networking, Applications, and Worksharing (CollaborateCom 2015)

Abstract

Software Defined Network (SDN) is a newly emerging network architecture with the core concept of separating the control plane and the data plane. A centralized controller is introduced to manage and configure network equipments to realize flexible control of network traffic. SDN technology provides a good platform for application-oriented network innovations to improve network resource utilization, simplify network management, and reduce operating cost. With SDN devices (e.g., OpenFlow switches), routing becomes more flexible by simply changing the contents of flow tables. The flow table is usually implemented in expensive and power-hungry Ternary Content Addressable Memory (TCAM), which is thus capacity-limited. How to optimize the network performance with the consideration of limited TCAM capacity is therefore significant. For example, multi-path routing (MPR) has been widely regarded as a promising method to promote the network performance. However, MPR is at the expense of additional forwarding rule, imposing a heavy burden on the limited flow table. In this paper, we are motivated to investigate an MPR schedule problem with joint consideration of forwarding rule placement. An integer linear programming (ILP) model is formulated to describe this optimization problem. To address the computation complexity, we further design a three-phase heuristic algorithm. Its high efficiency is validated by the fact that it much approaches the optimal solution, according to our extensive simulation studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    http://www.gurobi.com.

References

  1. Giroire, F., Moulierac, J., Phan, T.K.: Optimizing rule placement in software-defined networks for energy-aware routing. In: Proceedings of GLOBECOM, pp. 2523–2529. IEEE (2014)

    Google Scholar 

  2. Hopps, C.E.: Analysis of an equal-cost multi-path algorithm (2000)

    Google Scholar 

  3. Dasgupta, M., Biswas, G.: Design of multi-path data routing algorithm based on network reliability. Comput. Electr. Eng. 38, 1433–1443 (2012)

    Article  Google Scholar 

  4. Cervera, G., Barbeau, M., Garcia-Alfaro, J., Kranakis, E.: A multipath routing strategy to prevent flooding disruption attacks in link state routing protocols for MANETs. J. Netw. Comput. Appl. 36, 744–755 (2013)

    Article  Google Scholar 

  5. Zheng, M., Liang, W., Yu, H., Xiao, Y., Han, J.: Energy-aware utility optimisation for joint multi-path routing and MAC layer retransmission control in TDMA-based wireless sensor networks. Int. J. Sens. Netw. 14, 120–129 (2013)

    Article  Google Scholar 

  6. Németh, F., Sonkoly, B., Csikor, L., Gulyás, A.: A large-scale multipath playground for experimenters and early adopters. In: Proceedings of SIGCOMM, pp. 481–482. ACM (2013)

    Google Scholar 

  7. Ford, A., Raiciu, C., Handley, M., Barre, S., Iyengar, J., et al.: Architectural guidelines for multipath TCP development. IETF, Informational RFC 6182, 1721–2070 (2011)

    Google Scholar 

  8. Ganjali, Y., Keshavarzian, A.: Load balancing in ad hoc networks: single-path routing vs. multi-path routing. In: Proceedings of INFOCOM, pp. 1120–1125. IEEE (2004)

    Google Scholar 

  9. Lu, W., Zhou, X., Gong, L., Zhang, M., Zhu, Z.: Dynamic multi-path service provisioning under differential delay constraint in elastic optical networks. Commun. Lett. 17, 158–161 (2013)

    Article  Google Scholar 

  10. Curtis, A.R., Mogul, J.C., Tourrilhes, J., Yalagandula, P., Sharma, P., Banerjee, S.: DevoFlow: scaling flow management for high-performance networks. In: Proceedings of SIGCOMM, pp. 254–265. ACM (2011)

    Google Scholar 

  11. Mogul, J.C., Tourrilhes, J., Yalagandula, P., Sharma, P., Curtis, A.R., Banerjee, S.: Devoflow: cost-effective flow management for high performance enterprise networks. In: Proceedings of SIGCOMM, pp. 158–161. ACM (2010)

    Google Scholar 

  12. Al-Fares, M., Radhakrishnan, S., Raghavan, B., Huang, N., Vahdat, A.: Hedera: dynamic flow scheduling for data center networks. In: Proceedings of NSDI, p. 19 (2010)

    Google Scholar 

  13. Curtis, A.R., Kim, W., Yalagandula, P.: Mahout: low-overhead datacenter traffic management using end-host-based elephant detection. In: Proceedings of INFOCOM, pp. 1629–1637. IEEE (2011)

    Google Scholar 

  14. Li, Y., Zhou, L., Yang, Y., Chao, H.C.: Optimization architecture for joint multi-path routing and scheduling in wireless mesh networks. Math. Comput. Model. 53, 458–470 (2011)

    Article  MATH  Google Scholar 

  15. Xu, L., Zhao, W., Jiang, L., Jin, J., Gui, N.: Multi-path anonymous on demand routing protocol. In: Proceedings of IMCCC, pp. 858–863. IEEE (2013)

    Google Scholar 

  16. Meghanathan, N.: A location prediction based routing protocol and its extensions for multicast and multi-path routing in mobile ad hoc networks. Ad Hoc Netw. 9, 1104–1126 (2011)

    Article  Google Scholar 

  17. Guo, J., Liu, F., Huang, X., Lui, J., Hu, M., Gao, Q., Jin, H.: On efficient bandwidth allocation for traffic variability in datacenters. In: Proceedings of INFOCOM, pp. 1572–1580. IEEE (2014)

    Google Scholar 

  18. Guo, J., Liu, F., Tang, H., Lian, Y., Jin, H., Lui, J.: Falloc: fair network bandwidth allocation in iaas datacenters via a bargaining game approach. In: Proceedings of ICNP, pp. 1–10. IEEE (2013)

    Google Scholar 

  19. Guo, J., Liu, F., Zeng, D., Lui, J., Jin, H.: A cooperative game based allocation for sharing data center networks. In: Proceedings of INFOCOM, pp. 2139–2147. IEEE (2013)

    Google Scholar 

  20. Guo, J., Liu, F., Lui, J., Jin, H.J.: Fair network bandwidth allocation in iaas datacenters via a cooperative game approach. IEEE/ACM Trans. Netw. (2015)

    Google Scholar 

  21. Cohen, R., Lewin-Eytan, L., Naor, J.S., Raz, D.: On the effect of forwarding table size on SDN network utilization. In: Proceedings of INFOCOM, pp. 1734–1742. IEEE (2014)

    Google Scholar 

Download references

Acknowledgements

This research was supported by the NSF of China (Grant No. 61402425, 61501412, 61272470, 61502439, 61305087, 61440060), the China Postdoctoral Science Foundation funded project (Grant No. 2014M562086), the Fundamental Research Funds for National University, China University of Geosciences, Wuhan (Grant No. CUG14065, CUGL150829), the Provincial Natural Science Foundation of Hubei (Grant No. 2015CFA065).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deze Zeng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Institute for Computer Sciences, Social Informatics and Telecommunications Engineering

About this paper

Cite this paper

Zhang, J., Zeng, D., Gu, L., Yao, H., Fan, Y. (2016). On Rule Placement for Multi-path Routing in Software-Defined Networks. In: Guo, S., Liao, X., Liu, F., Zhu, Y. (eds) Collaborative Computing: Networking, Applications, and Worksharing. CollaborateCom 2015. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 163. Springer, Cham. https://doi.org/10.1007/978-3-319-28910-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-28910-6_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-28909-0

  • Online ISBN: 978-3-319-28910-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics