[go: up one dir, main page]

Skip to main content

Remote Activation of Hardware Trojans via a Covert Temperature Channel

  • Conference paper
Security and Privacy in Communication Networks (SecureComm 2015)

Abstract

A hardware trojan (HT) is produced through the malicious tampering of an integrated circuit design. Depending on its placement and purpose, an HT may cause data leakage or corruption, computational errors, reduced system performance, and temporary or permanent denial-of-service through the disabling or destruction of the chip. The varied geographic locales involved in designing, fabricating, and testing a design allow an attacker ample opportunity to insert an HT. In this paper we propose a method to enable the remote activation of HT, via a covert temperature channel, across a network. Through experimentation, our activation method is shown to be feasible on modern computers. In addition, its design is tolerant of process variation to ensure that it can be reliably fabricated. The design was validated using industry standard STMicroelectronics 65 nm technology and shown to be undetectable against present detection techniques. We discuss the major challenges associated with such HT and future research needs to address them.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. CPU usage limiter for Linux (2015). https://github.com/opsengine/cpulimit

  2. Abramovici, M., Bradley, P.: Integrated circuit security: new threats and solutions. In: Proceedings of the 5th Annual Workshop on Cyber Security and Information Intelligence Research: Cyber Security and Information Intelligence Challenges and Strategies, pp. 55. ACM (2009)

    Google Scholar 

  3. Agarwal, K., Nassif, S.: Characterizing process variation in nanometer CMOS. In: 44th ACM/IEEE Design Automation Conference, DAC 2007, pp. 396–399. IEEE (2007)

    Google Scholar 

  4. Agrawal, D., Baktir, S., Karakoyunlu, D., Rohatgi, P., Sunar, B.: Trojan detection using IC fingerprinting. In: IEEE Symposium on Security and Privacy, SP 2007, pp. 296–310. IEEE (2007)

    Google Scholar 

  5. Banga, M., Chandrasekar, M., Fang, L., Hsiao, M.S.: Guided test generation for isolation and detection of embedded trojans in ICs. In: Proceedings of the 18th ACM Great Lakes symposium on VLSI, pp. 363–366. ACM (2008)

    Google Scholar 

  6. Barroso, L.A., Clidaras, J., Hölzle, U.: The datacenter as a computer: An introduction to the design of warehouse-scale machines. Synthesis Lectures on Computer Architecture 8(3), 1–154 (2013)

    Article  Google Scholar 

  7. Benik, A., Ventures, B.: The sorry state of server utilization and the impending post-hypervisor era (2013). https://gigaom.com/2013/11/30/the-sorry-state-of-server-utilization-and-the-impending-post-hypervisor-era/

  8. Bernstein, K., Frank, D.J., Gattiker, A.E., Haensch, W., Ji, B.L., Nassif, S.R., Nowak, E.J., Pearson, D.J., Rohrer, N.J.: High-performance CMOS variability in the 65-nm regime and beyond. IBM Journal of Research and Development 50(4.5), 433–449 (2006)

    Google Scholar 

  9. Chakraborty, R.S., Narasimhan, S., Bhunia, S.: Hardware trojan: threats and emerging solutions. In: IEEE International High Level Design Validation and Test Workshop, HLDVT 2009, pp. 166–171. IEEE (2009)

    Google Scholar 

  10. Chang, M.H., Liu, C.P., Huang, H.P.: Chip implementation with combined temperature sensor and reference devices based on DZTC principle. Electronics Letters 46(13), 919–921 (2010)

    Article  Google Scholar 

  11. Chen, Z., Guo, X., Nagesh, R., Reddy, A., Gora, M., Maiti, A.: Hardware trojan designs on BASYS FPGA board. Embedded system challenge contest in cyber security awareness week-CSAW (2008)

    Google Scholar 

  12. Garg, R., Khatri, S.P.: A variation tolerant circuit design approach using parallel gates

    Google Scholar 

  13. He, L., Kahng, A., Tam, K.H., Xiong, J.: Simultaneous buffer insertion and wire sizing considering systematic CMP variation and random leff variation. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems 26(5), 845–857 (2007)

    Article  Google Scholar 

  14. Jin, Y., Makris, Y.: Hardware trojan detection using path delay fingerprint. In: IEEE International Workshop on Hardware-Oriented Security and Trust, HOST 2008, pp. 51–57. IEEE (2008)

    Google Scholar 

  15. Kash, J.A., Tsang, J.C., Knebel, D.R.: Method and apparatus for reverse engineering integrated circuits by monitoring optical emission (December 17, 2002), US Patent 6,496,022

    Google Scholar 

  16. Kiamilev, F., Hoover, R., Delvecchio, R., Waite, N., Janansky, S., McGee, R., Lange, C., Stamat, M.: Demonstration of hardware trojans. DEFCON, 16 (2008)

    Google Scholar 

  17. Lin, L., Burleson, W., Paar, C.: Moles: malicious off-chip leakage enabled by side-channels. In: Proceedings of the 2009 International Conference on Computer-Aided Design, pp. 117–122. ACM (2009)

    Google Scholar 

  18. Liu, H.: A measurement study of server utilization in public clouds. In: Proceedings of the 2011 IEEE Ninth International Conference on Dependable, Autonomic and Secure Computing, DASC 2011, pp. 435–442. IEEE Computer Society, Washington, DC (2011). http://dx.doi.org/10.1109/DASC.2011.87

  19. Orshansky, M., Nassif, S., Boning, D.: Design for manufacturability and statistical design: a constructive approach. Springer Science & Business Media (2007)

    Google Scholar 

  20. Segura, J., Rossello, J., Morra, J., Sigg, H.: A variable threshold voltage inverter for CMOS programmable logic circuits. IEEE Journal of Solid-State Circuits 33(8), 1262–1265 (1998)

    Article  Google Scholar 

  21. Tan, M.T., Chang, J.S., Tong, Y.C.: A process-and temperature-independent inverter-comparator for pulse width modulation applications. Analog Integrated Circuits and Signal Processing 27(1–2), 95–107 (2001)

    Google Scholar 

  22. Tehranipoor, M., Wang, C.: Introduction to Hardware Security and Trust. SpringerLink: Bücher. Springer (2011). https://books.google.com/books?id=bNiw9448FeIC

  23. Tehranipoor, M., Koushanfar, F.: A survey of hardware trojan taxonomy and detection (2010)

    Google Scholar 

  24. Tehranipoor, M., Salmani, H., Zhang, X., Wang, X., Karri, R., Rajendran, J., Rosenfeld, K.: Trustworthy hardware: Trojan detection and design-for-trust challenges. Computer 7, 66–74 (2010)

    Google Scholar 

  25. Instruments, T.: LM35 Precision Centigrade Temperature Sensors. datasheet (2015)

    Google Scholar 

  26. Tschanz, J., Bowman, K., De, V.: Variation-tolerant circuits: circuit solutions and techniques. In: Proceedings of the 42nd Annual Design Automation Conference, pp. 762–763. ACM (2005)

    Google Scholar 

  27. Wang, R.L., Yu, C.W., Yu, C., Liu, T.H., Yeh, C.M., Lin, C.F., Tsai, H.H., Juang, Y.Z.: Temperature sensor using BJT-MOSFET pair. Electronics Letters 48(9), 503–504 (2012)

    Article  Google Scholar 

  28. Wang, X., Salmani, H., Tehranipoor, M., Plusquellic, J.: Hardware trojan detection and isolation using current integration and localized current analysis. In: IEEE International Symposium on Defect and Fault Tolerance of VLSI Systems, DFTVS 2008, pp. 87–95. IEEE (2008)

    Google Scholar 

  29. Zander, S., Branch, P., Armitage, G.: Capacity of temperature-based covert channels. Communications Letters, IEEE 15(1), 82–84 (2011)

    Article  Google Scholar 

  30. Zhao, W., Liu, F., Agarwal, K., Acharyya, D., Nassif, S.R., Nowka, K.J., Cao, Y.: Rigorous extraction of process variations for 65-nm CMOS design. IEEE Transactions on Semiconductor Manufacturing 22(1), 196–203 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ryan M. Gerdes .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Institute for Computer Sciences, Social Informatics and Telecommunications Engineering

About this paper

Cite this paper

Dash, P., Perkins, C., Gerdes, R.M. (2015). Remote Activation of Hardware Trojans via a Covert Temperature Channel. In: Thuraisingham, B., Wang, X., Yegneswaran, V. (eds) Security and Privacy in Communication Networks. SecureComm 2015. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 164. Springer, Cham. https://doi.org/10.1007/978-3-319-28865-9_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-28865-9_16

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-28864-2

  • Online ISBN: 978-3-319-28865-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics