[go: up one dir, main page]

Skip to main content

Step Down and Step Up Statistical Procedures for Stock Selection with Sharp Ratio

  • Conference paper
  • First Online:
Machine Learning, Optimization, and Big Data (MOD 2015)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 9432))

Included in the following conference series:

Abstract

Stock selection by Sharp ratio is considered in the framework of multiple statistical hypotheses testing theory. The main attention is paid to comparison of Holm step down and Hochberg step up procedures for different loss functions. Comparison is made on the basis of conditional risk as a function of selection threshold. This approach allows to discover that properties of procedures depend not only on relationship between test statistics, but also depend on dispersion of Sharp ratios. Difference in error rate between two procedures is increasing when the concentration of Sharp ratios is increasing. When Sharp ratios do not have a concentration points there is no significant difference in quality of both procedures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Boginski, V., Butenko, S., Pardalos, P.M.: Statistical analysis of financial networks. Comput. Stat. Data Anal. 48(2), 431–443 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  2. Cai, G., Sarkar, S.K.: Modified Simes’ critical values under positive dependence. J. Stat. Plann. Infer. 136, 4129–4146 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  3. Cai, G., Sarkar, S.K.: Modified Simes’ critical values under independence. Stat. Probab. Lett. 78, 1362–1368 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  4. Holm, S.: A simple sequentially rejective multiple test procedure. Scand. J. Stat. 6, 65–70 (1979)

    MATH  MathSciNet  Google Scholar 

  5. Hochberg, Y.: A sharper Bonferroni procedure for multiple tests of significance. Biometrika 75, 800–802 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  6. Hochberg, Y., Tamhane, A.: Multiple Comparison Procedures. John Wiley and Sons, New York (1987)

    Book  MATH  Google Scholar 

  7. Huang, Y., Hsu, J.C.: Hochberg’s step-up method: cutting corners off holm’s step-down method. Biometrika 94(4), 965–975 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  8. Koldanov, P.A., Bautin, G.A.: Multiple decision problem for stock selection in market network. In: Pardalos, P.M., Resende, M., Vogiatzis, C., Walteros, J. (eds.) Learning and Intelligent Optimization. LNCS, vol. 8426, pp. 98–110. Springer, Heidelberg (2014)

    Google Scholar 

  9. Koldanov, P.A., Kalyagin, V.A., Bautin, G.A.: On some statistical procedures for stock selection problem. Ann. Math. Artif. Intell. doi:10.1007/s10472-014-9447-1

  10. Kalyagin, V.A., Koldanov, P.A., Koldanov, A.P., Zamaraev, V.A.: Market graph and markowitz model. In: Rassias, T.M., Floudas, C.A., Butenko, S. (eds.) Optimization in Science and Engineering (In Honor of the 60th Birthday of Panos M. Pardalos), pp. 293–306. Springer Science+Business Media, New York (2014)

    Google Scholar 

  11. Koldanov, A.P., Koldanov, P.A., Kalyagin, V.A., Pardalos, P.M.: Statistical procedures for the market graph construction. Comput. Stat. Data Anal. 68, 17–29 (2013)

    Article  MathSciNet  Google Scholar 

  12. Lehmann, E.L.: A theory of some multiple decision procedures 1. Ann. Math. Stat. 28, 1–25 (1957)

    Article  MATH  Google Scholar 

  13. Lehmann, E.L., Romano, J.P.: Testing Statistical Hypotheses. Springer, New York (2005)

    MATH  Google Scholar 

  14. Rao, C.V., Swarupchand, U.: Multiple comparison procedures - a note and a bibliography. J. Stat. 16, 66–109 (2009)

    Google Scholar 

  15. Sarkar, S.K., Chang, C.K.: The simes method for multiple testing with positively dependent test statistics. J. Am. Stat. Assoc. 92(440), 1601–1608 (1997)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgement

The authors are partly supported by National Research University Higher School of Economics, Russian Federation Government grant, N. 11.G34.31. 0057 and RFFI grant 14-01-00807.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. P. Koldanov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Koldanov, A.P., Kalyagin, V.A., Pardalos, P.M. (2015). Step Down and Step Up Statistical Procedures for Stock Selection with Sharp Ratio. In: Pardalos, P., Pavone, M., Farinella, G., Cutello, V. (eds) Machine Learning, Optimization, and Big Data. MOD 2015. Lecture Notes in Computer Science(), vol 9432. Springer, Cham. https://doi.org/10.1007/978-3-319-27926-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-27926-8_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-27925-1

  • Online ISBN: 978-3-319-27926-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics