Abstract
In this work, we propose a fast and simple approach to obtain a spherical parameterization of a certain class of closed surfaces without holes. Our approach relies on empirical findings that can be mathematically investigated, to a certain extent, by using Laplace-Beltrami Operator and associated geometrical tools. The mapping proposed here is defined by considering only the three first non-trivial eigenfunctions of the Laplace-Beltrami Operator. Our approach requires a topological condition on those eigenfunctions, whose nodal domains must be 2. We show the efficiency of the approach through numerical experiments performed on cortical surface meshes.
This work is funded by the Agence Nationale de la Recherche (ANR-12-JS03-001-01, “Modegy").
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Auzias, G., Lefevre, J., Le Troter, A., Fischer, C., Perrot, M., Régis, J., Coulon, O.: Model-driven harmonic parameterization of the cortical surface: Hip-hop. IEEE Trans. Med. Imaging 32(5), 873–887 (2013)
Bates, J.: The embedding dimension of laplacian eigenfunction maps. Appl. Comput. Harmonic Anal. 37(3), 516–530 (2014)
Bérard, P.: Volume des ensembles nodaux des fonctions propres du Laplacien. Séminaire de Théorie Spectrale et Géométrie 3, 1–9 (1984)
Cheng, S.-Y.: Eigenfunctions and nodal sets. Commentarii Mathematici Helvetici 51(1), 43–55 (1976)
Fischl, B., Sereno, M.I., Dale, A.M.: Cortical surface-based analysis: II: Inflation, flattening, and a surface-based coordinate system. Neuroimage 9(2), 195–207 (1999)
Germanaud, D., Lefèvre, J., Toro, R., Fischer, C., Dubois, J., Hertz-Pannier, L., Mangin, J.-F.: Larger is twistier: spectral analysis of gyrification (spangy) applied to adult brain size polymorphism. NeuroImage 63(3), 1257–1272 (2012)
Gu, X., Wang, Y., Chan, T.F., Thompson, P.M., Yau, S.T.: Genus zero surface conformal mapping and its application to brain surface mapping. IEEE Trans. Med. Imaging 23(8), 949–958 (2004)
Lai, R., Wen, Z., Yin, W., Gu, X., Lui, L.M.: Folding-free global conformal mapping for genus-0 surfaces by harmonic energy minimization. J. Sci. Comput. 58(3), 705–725 (2014)
Lefèvre, J., Intwali, V., Hertz-Pannier, L., Hüppi, P.S., Mangin, J.-F., Dubois, J., Germanaud, D.: Surface smoothing: a way back in early brain morphogenesis. In: Mori, K., Sakuma, I., Sato, Y., Barillot, C., Navab, N. (eds.) MICCAI 2013, Part I. LNCS, vol. 8149, pp. 590–597. Springer, Heidelberg (2013)
Lombaert, H., Sporring, J., Siddiqi, K.: Diffeomorphic spectral matching of cortical surfaces. In: Gee, J.C., Joshi, S., Pohl, K.M., Wells, W.M., Zöllei, L. (eds.) IPMI 2013. LNCS, vol. 7917, pp. 376–389. Springer, Heidelberg (2013)
Sheffer, A., Praun, E., Rose, K.: Mesh parameterization methods and their applications. Found. Trends\(\textregistered \) Comput. Graph. Vision 2(2), 105–171 (2006)
Zelditch, S.: Local and global analysis of eigenfunctions. arXiv preprint arXiv:0903.3420 (2009)
Aknowledgments
We would like to thank the reviewers for their very constructive comments. In particular a careful observation by one the reviewer is at the origin of the Remark 4 and of important modifications in the structure of the manuscript.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this paper
Cite this paper
Lefèvre, J., Auzias, G. (2015). Spherical Parameterization for Genus Zero Surfaces Using Laplace-Beltrami Eigenfunctions. In: Nielsen, F., Barbaresco, F. (eds) Geometric Science of Information. GSI 2015. Lecture Notes in Computer Science(), vol 9389. Springer, Cham. https://doi.org/10.1007/978-3-319-25040-3_14
Download citation
DOI: https://doi.org/10.1007/978-3-319-25040-3_14
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-25039-7
Online ISBN: 978-3-319-25040-3
eBook Packages: Computer ScienceComputer Science (R0)