[go: up one dir, main page]

Skip to main content

Argument-Based Case Revision in CBR for Story Generation

  • Conference paper
  • First Online:
Case-Based Reasoning Research and Development (ICCBR 2015)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 9343))

Included in the following conference series:

  • 1030 Accesses

Abstract

This paper presents a new approach to case revision in case-based reasoning based on the idea of argumentation. Previous work on case reuse has proposed the use of operations such as case amalgamation (or merging), which generate solutions by combining information coming from different cases. Such approaches are often based on exploring the search space of possible combinations looking for a solution that maximizes a certain criteria. We show how Revise can be performed by arguments attacking specific parts of a case produced by Reuse, and how they can guide and prevent repeating pitfalls in future cases. The proposed approach is evaluated in the task of automatic story generation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    In the experiments shown later we use a hand-fixed weight equal for all arguments; determining individual weights is discussed in future work.

  2. 2.

    The specific source/target pairs used for this experiment can be downloaded from https://sites.google.com/site/santiagoontanonvillar/software.

References

  1. Carpenter, B.: The Logic of Typed Feature Structures. Cambridge Tracts in Theoretical Computer Science, vol. 32. Cambridge University Press, Cambridge (1992)

    Book  MATH  Google Scholar 

  2. Chen, L., Pu, P.: Critiquing-based recommenders: survey and emerging trends. User Model. User-Adap. Interac. 22(1–2), 125–150 (2012)

    Article  Google Scholar 

  3. Cojan, J., Lieber, J.: Belief revision-based case-based reasoning. In: Proceedings of the ECAI-2012 Workshop SAMAI: Similarity and Analogy-based Methods in AI, pp. 33–39 (2012)

    Google Scholar 

  4. Dung, P.M.: On the acceptability of arguments and its fundamental role in nonmonotonic reasoning, logic programming and n-person games. Artif. Intell. 77(2), 321–357 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  5. Falkenhainer, B., Forbus, K.D., Gentner, D.: The structure-mapping engine: Algorithm and examples. Artif. intell. 41(1), 1–63 (1989)

    Article  MATH  Google Scholar 

  6. Gervás, P.: Computational approaches to storytelling and creativity. AI Mag. 30(3), 49–62 (2009)

    Google Scholar 

  7. Gervás, P., Díaz-Agudo, B., Peinado, F., Hervás, R.: Story plot generation based on CBR. J. Knowl.-Based Syst. 18(4–5), 235–242 (2005)

    Article  Google Scholar 

  8. Hammond, K.: Explaining and repairing plans that fail. Artificial Intelligence 45, 173–228 (1990)

    Article  Google Scholar 

  9. Lebowitz, M.: Creating characters in a story-telling universe. Poetics 13, 171–194 (1984)

    Article  Google Scholar 

  10. de Mántaras, L., López, R., McSherry, D., Bridge, D., Leake, D., Smyth, B., Craw, S., Faltings, B., Maher, M.L., Cox, M.T., Forbus, K., Keane, M.T., Aamodt, A., Watson, I.D.: Retrieval, reuse, revision and retention in case-based reasoning. Knowl. Eng. Rev. 20(03), 215–240 (2005)

    Article  Google Scholar 

  11. Meehan, J.: The Metanovel: writing stories by computer. Ph.D. thesis, Yale University (1976)

    Google Scholar 

  12. Ontañón, S., Plaza, E.: Amalgams: a formal approach for combining multiple case solutions. In: Bichindaritz, I., Montani, S. (eds.) ICCBR 2010. LNCS, vol. 6176, pp. 257–271. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  13. Ontañón, S., Plaza, E.: Similarity measures over refinement graphs. Mach. Learn. 87(1), 57–92 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  14. Ontañón, S., Plaza, E.: Coordinated inductive learning using argumentation-based communication. Auton. Agents Multi-Agent Syst. 29(2), 266–304 (2015). http://dx.doi.org/10.1007/s10458-014-9256-2

    Article  Google Scholar 

  15. Pérez y Pérez, R., Sharples, M.: Mexica: A computer model of a cognitive account of creative writing. J. Exp. Theor. Artif. Intell. 13(2), 119–139 (2001)

    Article  MATH  Google Scholar 

  16. Riedl, M.: Narrative generation: balancing plot and character. Ph.D. thesis, North Carolina State University (2004)

    Google Scholar 

  17. Smyth, B., Keane, M.T.: Adaptation-guided retrieval: questioning the similarity assumption in reasoning. Artif. Intell. 102(2), 249–293 (1998)

    Article  MATH  Google Scholar 

  18. Talmy, L.: Force dynamics in language and cognition. Cogn. Sci. 12(1), 49–100 (1988)

    Article  Google Scholar 

  19. Turner, S.R.: A model of creativity. In: The Creative Process: A Computer Model of Storytelling and Creativity. Lawrence Erlbaum Associates, Hillsdale (1994)

    Google Scholar 

  20. Wilke, W., Bergmann, R.: Techniques and knowledge used for adaptation during case-based problem solving. In: Mira, J., Moonis, A., de Pobil, A.P. (eds.) IEA/AIE 1998. LNCS, vol. 1416, pp. 497–506. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  21. Zhu, J., Ontañón, S.: Shall I compare thee to another story? - an empirical study of analogy-based story generation. IEEE Trans. Comput. Intell. AI Games 6(2), 216–227 (2014)

    Article  Google Scholar 

Download references

Acknowledgements

This research was partially supported by projects CoInvent (FET-Open grant 611553) and NASAID (CSIC Intramural 201550E022).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Santiago Ontañón .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Ontañón, S., Plaza, E., Zhu, J. (2015). Argument-Based Case Revision in CBR for Story Generation. In: Hüllermeier, E., Minor, M. (eds) Case-Based Reasoning Research and Development. ICCBR 2015. Lecture Notes in Computer Science(), vol 9343. Springer, Cham. https://doi.org/10.1007/978-3-319-24586-7_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-24586-7_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-24585-0

  • Online ISBN: 978-3-319-24586-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics