[go: up one dir, main page]

Skip to main content

Push or Delay? Decomposing Smartphone Notification Response Behaviour

  • Conference paper
  • First Online:
Human Behavior Understanding

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 9277))

Abstract

Smartphone notifications are often delivered without considering user interruptibility, potentially causing frustration for the recipient. Therefore research in this area has concerned finding contexts where interruptions are better received. The typical convention for monitoring interruption behaviour assumes binary actions, where a response is either completed or not at all. However, in reality a user may partially respond to an interruption, such as reacting to an audible alert or exploring which application caused it. Consequently we present a multi-step model of interruptibility that allows assessment of both partial and complete notification responses. Through a 6-month in-the-wild case study of 11,346 to-do list reminders from 93 users, we find support for reducing false-negative classification of interruptibility. Additionally, we find that different response behaviour is correlated with different contexts and that these behaviours are predictable with similar accuracy to complete responses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 34.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 44.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Adamczyk, P., Bailey, B.: If not now, when?: the effects of interruption at different moments within task execution. In: Proceedings of the (CHI 2004), pp. 271–278. ACM (2004)

    Google Scholar 

  2. Bailey, B., Iqbal, S.: Understanding changes in mental workload during execution of goal-directed tasks and its application for interruption management. ACM Trans. Comput. Hum. Interact. (TOCHI) 14(4), 21 (2008)

    Google Scholar 

  3. Fogarty, J., Hudson, S., Atkeson, C.G., Avrahami, D., Forlizzi, J., Kiesler, S., Lee, J., Yang, J.: Predicting human interruptibility with sensors. ACM Trans. Comput. Hum. Interact. (TOCHI) 12(1), 119–146 (2005)

    Article  Google Scholar 

  4. Grandhi, S., Jones, Q.: Technology-mediated interruption management. Int. J. Hum Comput Stud. 68(5), 288–306 (2010)

    Article  Google Scholar 

  5. Ho, J., Intille, S.: Using context-aware computing to reduce the perceived burden of interruptions from mobile devices. In: Proceedings of the (CHI 2005), pp. 909–918. ACM (2005)

    Google Scholar 

  6. Horvitz, E., Apacible, J.: Learning and reasoning about interruption. In: Proceedings of the (ICIMI 2003), pp. 20–27. ACM (2003)

    Google Scholar 

  7. Iqbal, S., Bailey, B.: Effects of intelligent notification management on users and their tasks. In: Proceedings of the (CHI 2008), pp. 93–102. ACM (2008)

    Google Scholar 

  8. Lathia, N., Rachuri, K., Mascolo, C., Rentfrow, P.: Contextual dissonance: design bias in sensor-based experience sampling methods. In: Proceedings of the (UbiComp 2013), pp. 183–192. ACM (2013)

    Google Scholar 

  9. Liu, G., Hossain, K.M.A., Iwai, M., Ito, M., Tobe, Y., Sezaki, K., Matekenya, D.: Beyond horizontal location context: measuring elevation using smartphone’s barometer. In: Adjunct Proceedings of the (UbiComp 2014), pp. 459–468. ACM (2014)

    Google Scholar 

  10. Mathan, S., Whitlow, S., Dorneich, M., Ververs, P., Davis, G.: Neurophysiological estimation of interruptibility: demonstrating feasibility in a field context. In: Proceedings of the 4th International Conference of the Augmented Cognition Society (2007)

    Google Scholar 

  11. McFarlane, D.: Interruption of people in human-computer interaction: A general unifying definition of human interruption and taxonomy. Technical report DTIC Document (1997)

    Google Scholar 

  12. McFarlane, D., Latorella, K.: The scope and importance of human interruption in human-computer interaction design. Hum. Comput. Interact. 17(1), 1–61 (2002)

    Article  Google Scholar 

  13. Miller, G.: The smartphone psychology manifesto. Perspect. Psychol. Sci. 7(3), 221–237 (2012)

    Article  Google Scholar 

  14. Okoshi, T., Ramos, J., Nozaki, H., Nakazawa, J., Dey, A., Tokuda, H.: Attelia: Reducing users cognitive load due to interruptive notifications on smart phones. In: Proceedings of the (PerCom 2015), IEEE (2015)

    Google Scholar 

  15. Pejovic, V., Musolesi, M.: Interruptme: designing intelligent prompting mechanisms for pervasive applications. In: Proceedings of the (UbiComp 2014), pp. 897–908. ACM (2014)

    Google Scholar 

  16. Pielot, M., de Oliveira, R., Kwak, H., Oliver, N.: Didn’t you see my message?: predicting attentiveness to mobile instant messages. In: Proceedings of the (CHI 2014), pp. 3319–3328. ACM (2014)

    Google Scholar 

  17. Pohl, H., Murray-Smith, R.: Focused and casual interactions: allowing users to vary their level of engagement. In: Proceedings of the (CHI 2013), pp. 2223–2232. ACM (2013)

    Google Scholar 

  18. Poppinga, B., Heuten, W., Boll, S.: Sensor-based identification of opportune moments for triggering notifications. IEEE Pervasive Comput. 13(1), 22–29 (2014)

    Article  Google Scholar 

  19. Rosenthal, S., Dey, A.K., Veloso, M.: Using decision-theoretic experience sampling to build personalized mobile phone interruption models. In: Lyons, K., Hightower, J., Huang, E.M. (eds.) Pervasive 2011. LNCS, vol. 6696, pp. 170–187. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  20. Sidman, M.: Tactics of Scientific Research: Evaluating Experimental Data in Psychology. Basic Books, New York (1960)

    Google Scholar 

  21. Smith, J., Lavygina, A., Ma, J., Russo, A., Dulay, N.: Learning to recognise disruptive smartphone notifications. In: Proceedings of the (MobileHCI 2014), pp. 121–124. ACM (2014)

    Google Scholar 

  22. Ter Hofte, H.: Xensible interruptions from your mobile phone. In: Proceedings of the (MobileHCI 2007), pp. 178–181. ACM (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liam D. Turner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Turner, L.D., Allen, S.M., Whitaker, R.M. (2015). Push or Delay? Decomposing Smartphone Notification Response Behaviour. In: Salah, A., Kröse, B., Cook, D. (eds) Human Behavior Understanding. Lecture Notes in Computer Science(), vol 9277. Springer, Cham. https://doi.org/10.1007/978-3-319-24195-1_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-24195-1_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-24194-4

  • Online ISBN: 978-3-319-24195-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics