Abstract
Local phase array for biometric recognition have demonstrated efficient performance in face, palmprint and finger knuckle recognition. If the matching score for each trait is calculated by one matcher using local phase array, the size of the system can be reduced and the simple score level fusion can be used to exhibit good performance for person authentication. In this paper, we consider the score level fusion of face, iris, palmprint, and finger knuckle whose matching scores are calculated using local phase array. Through a set of experiments using public databases, we demonstrate effectiveness of local phase array for multibiometric recognition compared with the combination of the state-of-the-art recognition algorithm for each trait.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
CASIA palmprint image database. http://www.cbsr.ia.ac.cn/english/PalmprintDatabases.asp
Iris Challenge Evaluation (ICE). http://www.nist.gov/itl/iad/ig/ice.cfm
PolyU FKP database. http://www4.comp.polyu.edu.hk/~biometrics/FKP.htm
Ahonen, T., Rahtu, E., Ojansivu, V., Heikkilä, J.: Recognition of blurred faces using local phase quantization. In: Proceedings of the International Conference on Pattern Recognition, pp. 1–4, December 2008
Aoyama, S., Ito, K., Aoki, T.: Similarity measure using local phase feature and its application to biometric recognition. In: Proceedings of IEEE Compututer Society Conference on Compututer Vision and Pattern Recognition Workshops, pp. 180–187, June 2013
Ito, K., Nakajima, H., Kobayashi, K., Aoki, T., Higuchi, T.: A fingerprint matching algorithm using phase-only correlation. IEICE Trans. Fundam. E87–A(3), 682–691 (2004)
Jain, A., Nandakumar, K., Ross, A.: Score normalization in multimodal biometric system. Pattern Recogn. 38(12), 2270–2285 (2005)
Jain, A., Flynn, P., Ross, A.: Handbook of Biometrics. Springer, New York (2008)
Phillips, P.J., Moon, H.J., Rizvi, S.A., Rauss, P.J.: The FERET evaluation methodology for face recognition algorithms. IEEE Trans. Pattern Anal. Mach. Intell. 22(10), 1090–1104 (2000)
Ross, A.A., Nandakumar, K., Jain, A.K.: Handbook of Multibiometrics. Springer, New York (2006)
Sun, Z., Tan, T.: Ordinal measures for iris recognition. IEEE Trans. Pattern Anal. Mach. Intell. 31(12), 2211–2226 (2009)
Zhang, L., Zhang, L., Zhang, D., Zhu, H.: Ensemble of local and global information for finger-knuckle-print recognition. Pattern Recogn. 44, 1990–1998 (2011)
Zhao, Q., Bu, W., Wu, X.: SIFT-based image alignment for contactless palmprint verification. In: Proceedings of International Conference on Biometrics, pp. 1–6, June 2013
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this paper
Cite this paper
Marval Pérez, L.R., Aoyama, S., Ito, K., Aoki, T. (2015). Score Level Fusion of Multibiometrics Using Local Phase Array. In: Ho, YS., Sang, J., Ro, Y., Kim, J., Wu, F. (eds) Advances in Multimedia Information Processing -- PCM 2015. PCM 2015. Lecture Notes in Computer Science(), vol 9315. Springer, Cham. https://doi.org/10.1007/978-3-319-24078-7_21
Download citation
DOI: https://doi.org/10.1007/978-3-319-24078-7_21
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-24077-0
Online ISBN: 978-3-319-24078-7
eBook Packages: Computer ScienceComputer Science (R0)