Abstract
Recently, high-performance elliptic curve cryptography has gained great attention for resource-constrained applications. In this paper, we use (a, b)-way Karatsuba algorithm to derive a new way of k-way Karatsuba algorithm and block recombination (KABR) approach. We have derived a new parallel systolic multiplication with subquadratic space complexity based on k-way KABR approach. By theoretical analysis, it is shown that the proposed structure using k-way BRKA has significantly less computation delay, less area-delay product, and less area. Moreover, the proposed structure can provide the desired tradeoff between space and time complexity.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Nangate standard cell library. http://www.si2.org/openeda.si2.org/projects/nangatelib/
Public key cryptography for the financial services industry: The elliptic curve digital signature algorithm (ecdsa) (1999)
Digital signature standard (dss). Federal Information Processing Standards, Publication 186–2 (2000)
Cook, S.: On the minimum computation time of functions, master’s thesis, Harvard University (1966)
El Gamal, T.: A Public Key Cryptosystem and a Signature Scheme Based on Discrete Logarithms. In: Blakely, G.R., Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 10–18. Springer, Heidelberg (1985)
Hasan, M.A., Meloni, N., Namin, A.H., Nègre, C.: Block recombination approach for subquadratic space complexity binary field multiplication based on toeplitz matrix-vector product. IEEE Trans. Computers 61, 151–163 (2012)
Jain, S.K., Song, L., Parhi, K.K.: Efficient semisystolic architectures for finite-field arithmetic. IEEE Trans. VLSI Syst. 6, 101–113 (1998)
Karatsuba, A.A., Ofman, Y.: Multiplication of multidigit numbers on automata. Soviet Physics Doklady 7, 595–596 (1963)
Lee, C.-Y., Horng, J.-S., Jou, I.-C., Lu, E.-H.: Low-Complexity Bit-Parallel Systolic Montgomery Multipliers for Special Classes of GF(2\(^{\text{m}}\)). IEEE Trans. Computers 54, 1061–1070 (2005)
Lee, C.-Y., Meher, P.K.: Efficient bit-parallel multipliers over finite fields GF(2\({}^{\text{m}}\)). Computers & Electrical Engineering 36, 955–968 (2010)
Lee, C.-Y., Meher, P.K.: Efficient subquadratic space complexity architectures for parallel MPB single- and double-multiplications for all trinomials using toeplitz matrix-vector product decomposition. IEEE Trans. on Circuits and Systems, 62-I (2015)
Lee, C.-Y., Meher, P.K.: Subquadratic space-complexity digit-serial multipliers over \(GF(2^m)\) using generalized (a, b)-way karatsuba algorithm. IEEE Trans. on Circuits and Systems 62-I (2015)
C.-Y. Lee, P. K. Meher, and C.-P. Chang, Efficient m-ary exponentiation over \(GF(2^m)\) using subquadratic ka-based three-operand montgomery multiplier. IEEE Trans. on Circuits and Systems 61-I, 3125–3134 (2014)
Lee, C.-Y., Meher, P. K., Lee, W.-Y.: Subquadratic space complexity digit-serial multiplier over binary extension fields using toom-cook algorithm. In: The International Symposium on Integrated Circuits (ISIC) (2014)
Lee, C.-Y., Yang, C.-S., Meher, B.K., Meher, P.K., Pan, J.-S.: Low-complexity digit-serial and scalable SPB/GPB multipliers over large binary extension fields using (b, 2)-way karatsuba decomposition. IEEE Trans. on Circuits and Systems 61-I, 3115–3124 (2014)
Lidl, R., Niederreiter, H.: Introduction to Finite Fields and Their Applications, 2nd edn. Cambridge University Press (1997)
Montgomery, P.L.: Five, six, and seven-term karatsuba-like formulae. IEEE Trans. Computers 54, 362–369 (2005)
Toom, A.L.: The complexity of a scheme of functional elements realizing the multiplication of integers. Soviet Mathematics Doklady 3, 714–716 (1963)
van der Hoeven, J., Lecerf, G.: On the complexity of multivariate blockwise polynomial multiplication. In: ISSAC 2012, pp. 211–218 (2012)
Xie, J., Meher, P.K., Mao, Z.: High-throughput finite field multipliers using redundant basis for FPGA and ASIC implementations. IEEE Trans. on Circuits and Systems 62-I, 110–119 (2015)
Xie, X.-N., Chen, G., Li, Y.: Novel bit-parallel multiplier for \(GF(2^m)\) defined by all-one polynomial using generalized karatsuba algorithm. Inf. Process. Lett. 114, 140–146 (2014)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer International Publishing Switzerland
About this paper
Cite this paper
Lee, CY., Chiou, C.W., Lin, JM. (2016). Subquadratic Space-Complexity Parallel Systolic Multiplier Based on Karatsuba Algorithm and Block Recombination. In: Zin, T., Lin, JW., Pan, JS., Tin, P., Yokota, M. (eds) Genetic and Evolutionary Computing. GEC 2015. Advances in Intelligent Systems and Computing, vol 388. Springer, Cham. https://doi.org/10.1007/978-3-319-23207-2_19
Download citation
DOI: https://doi.org/10.1007/978-3-319-23207-2_19
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-23206-5
Online ISBN: 978-3-319-23207-2
eBook Packages: EngineeringEngineering (R0)