[go: up one dir, main page]

Skip to main content

The Bag of Micro-Movements for Human Activity Recognition

  • Conference paper
  • First Online:
Image Analysis and Recognition (ICIAR 2015)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 9164))

Included in the following conference series:

  • 1994 Accesses

Abstract

The bag of words is a popular and successful method for human activity recognition. This method usually uses visual based sparse features for activity classification. It is also known that movement has useful clues for activity detection, but sparse features usually miss this vital piece of information. Two-dimensional image planar motion information is easy to extract but it is very dependant on depth and calibration parameters. Three-dimensional motion is rich in information and can be calculated from active cameras or multiple passive cameras, but it restricts the applicability of the method. To overcome these issues, we have proposed the use of disparity maps, which are relatively easy to extract from stereo videos and are more informative than 2D image planar motion information. In this work, we have combined the motion information and disparity maps to introduce a new sparse feature descriptor that encodes motion information, instead of visual information.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    More accurately by the number of times a word appeared in a document compared to the number of times it appeared in other documents.

  2. 2.

    The distance between two center of projections.

  3. 3.

    The distance between center of projection and the image plane.

References

  1. Campbell, L.W., Bobick, A.F.: Recognition of human body motion using phase space constraints. In: Fifth International Conference on Computer Vision, Proceedings, pp. 624–630. IEEE (1995)

    Google Scholar 

  2. Rao, C., Shah, M.: View-invariance in action recognition. In: Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 2001, vol. 2, pp. II–316. IEEE (2001)

    Google Scholar 

  3. Dollár, P., Rabaud, V., Cottrell, G., Belongie, S.: Behavior recognition via sparse spatio-temporal features. In: 2nd Joint IEEE International Workshop on Visual Surveillance and Performance Evaluation of Tracking and Surveillance 2005, pp. 65–72. IEEE (2005)

    Google Scholar 

  4. Sheikh, Y., Sheikh, M., Shah, M.: Exploring the space of a human action. In: Tenth IEEE International Conference on Computer Vision, ICCV 2005, vol. 1, pp. 144–149. IEEE (2005)

    Google Scholar 

  5. Yilmaz, A., Shah, M.: Actions sketch: A novel action representation. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 2005, vol. 1, pp. 984–989. IEEE (2005)

    Google Scholar 

  6. Yilmaz, A., Shah, M.: Recognizing human actions in videos acquired by uncalibrated moving cameras. In: Tenth IEEE International Conference on Computer Vision, ICCV 2005, vol. 1, pp. 150–157. IEEE (2005)

    Google Scholar 

  7. Bobick, A.F., Davis, J.W.: The recognition of human movement using temporal templates. IEEE Trans. Pattern Anal. Mach. Intel. 23(3), 257–267 (2001)

    Article  Google Scholar 

  8. Blank, M., Gorelick, L., Shechtman, E., Irani, M., Basri, R.: Actions as space-time shapes. In: Tenth IEEE International Conference on Computer Vision, ICCV 2005, vol. 2, pp. 1395–1402. IEEE (2005)

    Google Scholar 

  9. Laptev, I.: On space-time interest points. Int. J. Comput. Vis. 64(2–3), 107–123 (2005)

    Article  Google Scholar 

  10. Laptev, I., Marszalek, M., Schmid, C., Rozenfeld, C.: Learning realistic human actions from movies. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2008, pp. 1–8. IEEE (2008)

    Google Scholar 

  11. Uddin, M.Z., Thang, N.D., Kim, J.T., Kim, T.-S.: Human activity recognition using body joint-angle features and hidden markov model. Etri J. 33(4), 569–579 (2011)

    Article  Google Scholar 

  12. Barnachon, M., Bouakaz, S., Boufama, B., Guillou, E.: Human actions recognition from streamed motion capture. In: 2012 21st International Conference on Pattern Recognition (ICPR), pp. 3807–3810. IEEE (2012)

    Google Scholar 

  13. Wang, H., Kläser, A., Schmid, C., Liu, C.-L.: Dense trajectories and motion boundary descriptors for action recognition. Int. J. Comput. Vis. 103(1), 60–79 (2013)

    Article  MathSciNet  Google Scholar 

  14. Wang, H., Schmid, C.: Action recognition with improved trajectories. In: 2013 IEEE International Conference on Computer Vision (ICCV), pp. 3551–3558. IEEE (2013)

    Google Scholar 

  15. Diaf, A.A.: Eigenvector-based dimensionality reduction for human activity recognition and data classification. Ph.D. thesis, University of Windsor (2013)

    Google Scholar 

  16. Barnachon, M., Bouakaz, S., Boufama, B., Guillou, E.: Ongoing human action recognition with motion capture. Pattern Recog. 47(1), 238–247 (2014)

    Article  Google Scholar 

  17. Niebles, J.C., Wang, H., Fei-Fei, L.: Unsupervised learning of human action categories using spatial-temporal words. Int. J. Comput. Vis. 79(3), 299–318 (2008)

    Article  Google Scholar 

  18. Willems, G., Tuytelaars, T., Van Gool, L.: An efficient dense and scale-invariant spatio-temporal interest point detector. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part II. LNCS, vol. 5303, pp. 650–663. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  19. Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 60(2), 91–110 (2004)

    Article  Google Scholar 

  20. Wang, H., Klaser, A., Schmid, C., Liu, C.-L.: Action recognition by dense trajectories. In: 2011 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3169–3176. IEEE (2011)

    Google Scholar 

  21. Kang, Y.-S., Ho, Y.-S.: Efficient stereo image rectification method using horizontal baseline. In: Ho, Y.-S. (ed.) PSIVT 2011, Part I. LNCS, vol. 7087, pp. 301–310. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  22. Rosten, E., Drummond, T.W.: Machine learning for high-speed corner detection. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006, Part I. LNCS, vol. 3951, pp. 430–443. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pejman Habashi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Habashi, P., Boufama, B., Ahmad, I.S. (2015). The Bag of Micro-Movements for Human Activity Recognition. In: Kamel, M., Campilho, A. (eds) Image Analysis and Recognition. ICIAR 2015. Lecture Notes in Computer Science(), vol 9164. Springer, Cham. https://doi.org/10.1007/978-3-319-20801-5_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-20801-5_29

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-20800-8

  • Online ISBN: 978-3-319-20801-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics