[go: up one dir, main page]

Skip to main content

Probabilistic Hierarchical Morphological Segmentation of Textures

  • Conference paper
Mathematical Morphology and Its Applications to Signal and Image Processing (ISMM 2015)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 9082))

  • 1874 Accesses

Abstract

A general methodology is introduced for texture segmentation in binary, scalar, or multispectral images. Textural information is obtained from morphological operations of images. Starting from a fine partition of the image in regions, hierarchical segmentations are designed in a probabilistic framework by means of probabilistic distances conveying the textural information, and of random markers accounting for the morphological content of the regions and of their spatial arrangement.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Angulo, J., Jeulin, D.: Stochastic watershed segmentation. In: Banon, G., Barrera, J., Braga-Neto, U. (eds.) Proc. ISMM 2007, 8th International Symposium on Mathematical Morphology, Rio de Janeiro, Brazil, October 10-13, pp. 265–276 (2007) ISBN 978-85-17-00032-4

    Google Scholar 

  2. Aubert, A., Jeulin, D.: Classification morphologique de surfaces rugueuses, Revue de Métallurgie - CIT/Sience et Génie des Matériaux, pp. 253–262 (February 2000)

    Google Scholar 

  3. Benzecri, J.P.: L’analyse des données, TIB (3) § 3-4, pp. 133–149; TIB (4) §2.3, pp. 180–183, Dunod (1973)

    Google Scholar 

  4. Beucher, S., Lantuéjoul, C.: Use of watersheds in contour detection. In: International Workshop on Image Processing, Real-time Edge and Motion Detection (1979)

    Google Scholar 

  5. Cord, A., Jeulin, D., Bach, F.: Segmentation of random textures by morphological and linear operators. In: Banon, G., Barrera, J., Braga-Neto, U. (eds.) Proc. ISMM 2007, 8th International Symposium on Mathematical Morphology, Rio de Janeiro, Brazil, October 10-13, pp. 387–398 (2007) ISBN 978-85-17-00032-4

    Google Scholar 

  6. Cord, A., Bach, F., Jeulin, D.: Texture classification by statistical learning from morphological image processing. Application to metallic surfaces. Journal of Microscopy 239, 159–166 (2010)

    Google Scholar 

  7. Duda, R.O., Hart, P.E.: Pattern recognition and scene analysis, pp. 236–237. Wiley, New York (1973)

    Google Scholar 

  8. Gillibert, L., Jeulin, D.: Stochastic Multiscale Segmentation Constrained by Image Content. In: Soille, P., Pesaresi, M., Ouzounis, G.K. (eds.) ISMM 2011. LNCS, vol. 6671, pp. 132–142. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  9. Gillibert, L., Peyrega, C., Jeulin, D., Guipont, V., Jeandin, M.: 3D Multiscale Segmentation and Morphological Analysis of X-ray Microtomography from Cold-sprayed Coatings. Journal of Microscopy 248(pt. 2), 187–199 (2012)

    Article  Google Scholar 

  10. Gratin, C., Vitria, J., Moreso, F., Seron, D.: Texture classification using neural networks and local granulometries. In: Serra, J., Soile, P. (eds.) Mathematical Morphology and its Applications to Image Processing, pp. 309–316. Kluwer Academic Publishers (1994)

    Google Scholar 

  11. Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning, Data Mining, Inference, and Prediction, pp. 544–547. Springer (2001)

    Google Scholar 

  12. Modèles, J.D.: Morphologiques de Structures Aléatoires et de Changement d’Echelle. Thèse de Doctorat d’Etat ès Sciences Physiques, Université de Caen (Avril 25, 1991)

    Google Scholar 

  13. Jeulin D.: Remarques sur la segmentation probabiliste, N-10/08/MM, Internal report, CMM, Mines ParisTech (September 2008)

    Google Scholar 

  14. Matheron, G.: Eléments pour une théorie des milieux poreux, Masson, Paris (1967)

    Google Scholar 

  15. Matheron, G.: Random sets and integral geometry. Wiley (1975)

    Google Scholar 

  16. Meyer, F., Beucher, S.: Morphological segmentation. Journal of Visual Communication and Image Representation 1(1), 21–46 (1990)

    Article  Google Scholar 

  17. Meyer, F., Stawiaski, J.: A stochastic evaluation of the contour strength. In: Goesele, M., Roth, S., Kuijper, A., Schiele, B., Schindler, K. (eds.) Pattern Recognition. LNCS, vol. 6376, pp. 513–522. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  18. Jeulin, D., Moreaud, M.: Segmentation of 2D and 3D textures from estimates of the local orientation. Image Analysis and Stereology 27, 183–192 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  19. Noyel, G., Angulo, J., Jeulin, D.: Morphological segmentation of hyperspectral images. Image Analysis and Stereology 26, 101–109 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  20. Noyel, G., Angulo, J., Jeulin, D.: Classification-driven stochastic watershed. Application to multispectral segmentation. In: Proc. IS&T’s Fourth European Conference on Color in Graphics, Imaging and Vision (CGIV 2008), Terrassa - Barcelona, Spain, June 9-13, pp. 471–476 (2008)

    Google Scholar 

  21. Noyel, G., Angulo, J., Jeulin, D.: A new spatio-spectral morphological segmentation for multispectral remote sensing images. International Journal of Remote Sensing 31(22), 5895–5920 (2010)

    Article  Google Scholar 

  22. Pesaresi, M., Benediktsson, J.: A new approach for the morphological segmentation of high resolution satellite imagery. Geoscience and Remote Sensing 39(2), 309–320 (2001)

    Article  Google Scholar 

  23. Serra, J.: Image Analysis and Mathematical Morphology, vol. I. Academic Press, London (1982)

    MATH  Google Scholar 

  24. Sivakumar, K., Goutsias, J.: Monte Carlo estimation of morphological granulometric discrete size distributions. In: Serra, J., Soille, P. (eds.) Mathematical Morphology and its Applications to Image Processing, pp. 233–240. Kluwer Academic Publishers (1994)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dominique Jeulin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Jeulin, D. (2015). Probabilistic Hierarchical Morphological Segmentation of Textures. In: Benediktsson, J., Chanussot, J., Najman, L., Talbot, H. (eds) Mathematical Morphology and Its Applications to Signal and Image Processing. ISMM 2015. Lecture Notes in Computer Science(), vol 9082. Springer, Cham. https://doi.org/10.1007/978-3-319-18720-4_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-18720-4_27

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-18719-8

  • Online ISBN: 978-3-319-18720-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics