Abstract
A general methodology is introduced for texture segmentation in binary, scalar, or multispectral images. Textural information is obtained from morphological operations of images. Starting from a fine partition of the image in regions, hierarchical segmentations are designed in a probabilistic framework by means of probabilistic distances conveying the textural information, and of random markers accounting for the morphological content of the regions and of their spatial arrangement.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Angulo, J., Jeulin, D.: Stochastic watershed segmentation. In: Banon, G., Barrera, J., Braga-Neto, U. (eds.) Proc. ISMM 2007, 8th International Symposium on Mathematical Morphology, Rio de Janeiro, Brazil, October 10-13, pp. 265–276 (2007) ISBN 978-85-17-00032-4
Aubert, A., Jeulin, D.: Classification morphologique de surfaces rugueuses, Revue de Métallurgie - CIT/Sience et Génie des Matériaux, pp. 253–262 (February 2000)
Benzecri, J.P.: L’analyse des données, TIB (3) § 3-4, pp. 133–149; TIB (4) §2.3, pp. 180–183, Dunod (1973)
Beucher, S., Lantuéjoul, C.: Use of watersheds in contour detection. In: International Workshop on Image Processing, Real-time Edge and Motion Detection (1979)
Cord, A., Jeulin, D., Bach, F.: Segmentation of random textures by morphological and linear operators. In: Banon, G., Barrera, J., Braga-Neto, U. (eds.) Proc. ISMM 2007, 8th International Symposium on Mathematical Morphology, Rio de Janeiro, Brazil, October 10-13, pp. 387–398 (2007) ISBN 978-85-17-00032-4
Cord, A., Bach, F., Jeulin, D.: Texture classification by statistical learning from morphological image processing. Application to metallic surfaces. Journal of Microscopy 239, 159–166 (2010)
Duda, R.O., Hart, P.E.: Pattern recognition and scene analysis, pp. 236–237. Wiley, New York (1973)
Gillibert, L., Jeulin, D.: Stochastic Multiscale Segmentation Constrained by Image Content. In: Soille, P., Pesaresi, M., Ouzounis, G.K. (eds.) ISMM 2011. LNCS, vol. 6671, pp. 132–142. Springer, Heidelberg (2011)
Gillibert, L., Peyrega, C., Jeulin, D., Guipont, V., Jeandin, M.: 3D Multiscale Segmentation and Morphological Analysis of X-ray Microtomography from Cold-sprayed Coatings. Journal of Microscopy 248(pt. 2), 187–199 (2012)
Gratin, C., Vitria, J., Moreso, F., Seron, D.: Texture classification using neural networks and local granulometries. In: Serra, J., Soile, P. (eds.) Mathematical Morphology and its Applications to Image Processing, pp. 309–316. Kluwer Academic Publishers (1994)
Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning, Data Mining, Inference, and Prediction, pp. 544–547. Springer (2001)
Modèles, J.D.: Morphologiques de Structures Aléatoires et de Changement d’Echelle. Thèse de Doctorat d’Etat ès Sciences Physiques, Université de Caen (Avril 25, 1991)
Jeulin D.: Remarques sur la segmentation probabiliste, N-10/08/MM, Internal report, CMM, Mines ParisTech (September 2008)
Matheron, G.: Eléments pour une théorie des milieux poreux, Masson, Paris (1967)
Matheron, G.: Random sets and integral geometry. Wiley (1975)
Meyer, F., Beucher, S.: Morphological segmentation. Journal of Visual Communication and Image Representation 1(1), 21–46 (1990)
Meyer, F., Stawiaski, J.: A stochastic evaluation of the contour strength. In: Goesele, M., Roth, S., Kuijper, A., Schiele, B., Schindler, K. (eds.) Pattern Recognition. LNCS, vol. 6376, pp. 513–522. Springer, Heidelberg (2010)
Jeulin, D., Moreaud, M.: Segmentation of 2D and 3D textures from estimates of the local orientation. Image Analysis and Stereology 27, 183–192 (2008)
Noyel, G., Angulo, J., Jeulin, D.: Morphological segmentation of hyperspectral images. Image Analysis and Stereology 26, 101–109 (2007)
Noyel, G., Angulo, J., Jeulin, D.: Classification-driven stochastic watershed. Application to multispectral segmentation. In: Proc. IS&T’s Fourth European Conference on Color in Graphics, Imaging and Vision (CGIV 2008), Terrassa - Barcelona, Spain, June 9-13, pp. 471–476 (2008)
Noyel, G., Angulo, J., Jeulin, D.: A new spatio-spectral morphological segmentation for multispectral remote sensing images. International Journal of Remote Sensing 31(22), 5895–5920 (2010)
Pesaresi, M., Benediktsson, J.: A new approach for the morphological segmentation of high resolution satellite imagery. Geoscience and Remote Sensing 39(2), 309–320 (2001)
Serra, J.: Image Analysis and Mathematical Morphology, vol. I. Academic Press, London (1982)
Sivakumar, K., Goutsias, J.: Monte Carlo estimation of morphological granulometric discrete size distributions. In: Serra, J., Soille, P. (eds.) Mathematical Morphology and its Applications to Image Processing, pp. 233–240. Kluwer Academic Publishers (1994)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this paper
Cite this paper
Jeulin, D. (2015). Probabilistic Hierarchical Morphological Segmentation of Textures. In: Benediktsson, J., Chanussot, J., Najman, L., Talbot, H. (eds) Mathematical Morphology and Its Applications to Signal and Image Processing. ISMM 2015. Lecture Notes in Computer Science(), vol 9082. Springer, Cham. https://doi.org/10.1007/978-3-319-18720-4_27
Download citation
DOI: https://doi.org/10.1007/978-3-319-18720-4_27
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-18719-8
Online ISBN: 978-3-319-18720-4
eBook Packages: Computer ScienceComputer Science (R0)