Abstract
We propose a new architecture for difficult image processing operations, such as natural edge detection or thin object segmentation. The architecture is based on a simple combination of convolutional neural networks with the nearest neighbor search.
We focus our attention on the situations when the desired image transformation is too hard for a neural network to learn explicitly. We show that in such situations the use of the nearest neighbor search on top of the network output allows to improve the results considerably and to account for the underfitting effect during the neural network training. The approach is validated on three challenging benchmarks, where the performance of the proposed architecture matches or exceeds the state-of-the-art.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
- 2.
http://sites.skoltech.ru/compvision/projects/n4/ at the moment of publication.
References
LeCun, Y., Boser, B.E., Denker, J.S., Henderson, D., Howard, R.E., Hubbard, W.E., Jackel, L.D.: Handwritten digit recognition with a back-propagation network. In: NIPS, pp. 396–404 (1989)
Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: NIPS (2012)
Ciresan, D.C., Giusti, A., Gambardella, L.M., Schmidhuber, J.: Deep neural networks segment neuronal membranes in electron microscopy images. In: NIPS, pp. 2852–2860 (2012)
Arbeláez, P., Maire, M., Fowlkes, C., Malik, J.: Contour detection and hierarchical image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 33(5), 898–916 (2011)
Silberman, N., Fergus, R.: Indoor scene segmentation using a structured light sensor. In: ICCV Workshops, pp. 601–608. IEEE (2011)
Staal, J., Abrmoff, M.D., Niemeijer, M., Viergever, M.A., van Ginneken, B.: Ridge-based vessel segmentation in color images of the retina. IEEE Trans. Med. Imaging 23(4), 501–509 (2004)
Egmont-Petersen, M., de Ridder, D., Handels, H.: Image processing with neural networks - a review. Pattern Recognit. 35(10), 2279–2301 (2002)
Mnih, V., Hinton, G.E.: Learning to detect roads in high-resolution aerial images. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part VI. LNCS, vol. 6316, pp. 210–223. Springer, Heidelberg (2010)
Schulz, H., Behnke, S.: Learning object-class segmentation with convolutional neural networks. In: ESANN, vol. 3 (2012)
Kivinen, J.J., Williams, C.K.I., Heess, N.: Visual boundary prediction: A deep neural prediction network and quality dissection. In: AISTATS, pp. 512–521 (2014)
Ranzato, M., Hinton, G.E.: Modeling pixel means and covariances using factorized third-order boltzmann machines. In: CVPR, pp. 2551–2558 (2010)
Farabet, C., Couprie, C., Najman, L., LeCun, Y.: Learning hierarchical features for scene labeling. IEEE Trans. Pattern Anal. Mach. Intell. 35(8), 1915–1929 (2013)
Jain, V., Murray, J.F., Roth, F., Turaga, S.C., Zhigulin, V.P., Briggman, K.L., Helmstaedter, M., Denk, W., Seung, H.S.: Supervised learning of image restoration with convolutional networks. In: ICCV, pp. 1–8 (2007)
Jain, V., Seung, H.S.: Natural image denoising with convolutional networks. In: NIPS, pp. 769–776 (2008)
Burger, H.C., Schuler, C.J., Harmeling, S.: Image denoising: can plain neural networks compete with bm3d? In: CVPR, pp. 2392–2399 (2012)
Chopra, S., Hadsell, R., LeCun, Y.: Learning a similarity metric discriminatively, with application to face verification.In: CVPR, vol. 1, pp. 539–546 (2005)
Dabov, K., Foi, A., Katkovnik, V., Egiazarian, K.: Image restoration by sparse 3d transform-domain collaborative filtering. In: Electronic Imaging 2008, International Society for Optics and Photonics, pp. 681207–681207 (2008)
Criminisi, A., Pérez, P., Toyama, K.: Region filling and object removal by exemplar-based image inpainting. IEEE Trans. Image Process. 13(9), 1200–1212 (2004)
Freeman, W.T., Pasztor, E.C., Carmichael, O.T.: Learning low-level vision. Int. J. Comput. Vis. 40(1), 25–47 (2000)
Dollár, P., Zitnick, C.L.: Structured forests for fast edge detection. In: ICCV (2013)
Hinton, G.E., Srivastava, N., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.: Improving neural networks by preventing co-adaptation of feature detectors. CoRR abs/1207.0580 (2012)
Zeiler, M.D., Fergus, R.: Visualizing and understanding convolutional networks. CoRR abs/1311.2901 (2013)
Sermanet, P., Eigen, D., Zhang, X., Mathieu, M., Fergus, R., LeCun, Y.: Overfeat: Integrated recognition, localization and detection using convolutional networks. CoRR abs/1312.6229 (2013)
Vedaldi, A., Fulkerson, B.: VLFeat: An open and portable library of computer vision algorithms (2008). http://www.vlfeat.org/
Xiaofeng, R., Bo, L.: Discriminatively trained sparse code gradients for contour detection. In: NIPS, pp. 593–601 (2012)
Isola, P., Zoran, D., Krishnan, D., Adelson, E.H.: Crisp boundary detection using pointwise mutual information. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014, Part III. LNCS, vol. 8691, pp. 799–814. Springer, Heidelberg (2014)
Hou, X., Yuille, A., Koch, C.: Boundary detection benchmarking: Beyond f-measures. In: CVPR, vol. 2013, pp. 1–8. IEEE (2013)
Becker, C., Rigamonti, R., Lepetit, V., Fua, P.: Supervised feature learning for curvilinear structure segmentation. In: Mori, K., Sakuma, I., Sato, Y., Barillot, C., Navab, N. (eds.) MICCAI 2013, Part I. LNCS, vol. 8149, pp. 526–533. Springer, Heidelberg (2013)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this paper
Cite this paper
Ganin, Y., Lempitsky, V. (2015). \(N^4\)-Fields: Neural Network Nearest Neighbor Fields for Image Transforms. In: Cremers, D., Reid, I., Saito, H., Yang, MH. (eds) Computer Vision -- ACCV 2014. ACCV 2014. Lecture Notes in Computer Science(), vol 9004. Springer, Cham. https://doi.org/10.1007/978-3-319-16808-1_36
Download citation
DOI: https://doi.org/10.1007/978-3-319-16808-1_36
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-16807-4
Online ISBN: 978-3-319-16808-1
eBook Packages: Computer ScienceComputer Science (R0)