[go: up one dir, main page]

Skip to main content

Navigation of Distinct Euclidean Particles via Hierarchical Clustering

  • Chapter
  • First Online:
Algorithmic Foundations of Robotics XI

Part of the book series: Springer Tracts in Advanced Robotics ((STAR,volume 107))

Abstract

We present a centralized online (completely reactive) hybrid navigation algorithm for bringing a swarm of \(n\) perfectly sensed and actuated point particles in Euclidean \(d\) space (for arbitrary \(n\) and \(d\)) to an arbitrary goal configuration with the guarantee of no collisions along the way. Our construction entails a discrete abstraction of configurations using cluster hierarchies, and relies upon two prior recent constructions: (i) a family of hierarchy-preserving control policies and (ii) an abstract discrete dynamical system for navigating through the space of cluster hierarchies. Here, we relate the (combinatorial) topology of hierarchical clusters to the (continuous) topology of configurations by constructing “portals”—open sets of configurations supporting two adjacent hierarchies. The resulting online sequential composition of hierarchy-invariant swarming followed by discrete selection of a hierarchy “closer” to that of the destination along with its continuous instantiation via an appropriate portal configuration yields a computationally effective construction for the desired navigation policy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    We will mention in the conclusion a few such extensions presently in progress.

  2. 2.

    Although clustering algorithms generating degenerate hierarchies are available, many standard hierarchical clustering methods return binary clustering trees as a default, thereby avoiding commitment to some “optimal” number of clusters [18, 37].

  3. 3.

    Here, \(\mathring{A}\) denotes the interior of set \(A\).

  4. 4.

    A long prior robotics literature motivates the utility of this fully actuated “generalized damper” dynamical model [24], and provides methods for “lifts” to controllers for second order plants [20, 21] as well.

  5. 5.

    Note that for all \(\tau \in \mathcal {BT}_{J}\), \(\mathfrak {S}_o \left( \tau \right) \subseteq \mathring{\mathfrak {S}}\left( \tau \right) \).

  6. 6.

    Here, \({\mathrm {\mathbf {A}}}^\mathrm {T}\) denotes the transpose of \(\mathrm {\mathbf {A}}\).

  7. 7.

    Here, we use \(\eta _{i, I, \tau } : \left( \mathbb {R}^d\right) ^{J} \rightarrow \mathbb {R}\) (8).

  8. 8.

    In a metric space \(\left( X, d\right) \), the open ball \(B\left( \mathrm {x},r\right) \) centered at \(\mathrm {x}\) with radius \(r \in \mathbb {R}_{\ge 0}\) is the set of points in \(X\) whose distance to \(\mathrm {x}\) is less than \(r\), i.e. \(B\left( \mathrm {x},r\right) = \left\{ \mathrm {y} \in X \; | \; d\left( \mathrm {x},\mathrm {y}\right) < r \right\} \).

  9. 9.

    Here, we set \(\frac{\mathrm {x}}{\left\| \mathrm {x}\right\| _2} = 0\) for \(\mathrm {x} = 0\).

  10. 10.

    Here, \(\mathrm {\mathbf {I}}_{d}\) is the \(d \times d\) identity matrix, and \(\mathrm {\mathbf {1}}_k\) is the \(\mathbb {R}^k\) column vector of all ones. Also, \(\otimes \) and \(\cdot \) denote the Kronecker product and the standard array product, respectively.

References

  1. Adler, A., de Berg, M., Halperin, D., Solovey, K.: Efficient multi-robot motion planning for unlabeled discs in simple polygons. In: 30th European Workshop on Computational Geometry (EuroCG 2014) (2013)

    Google Scholar 

  2. Arnold, V.I.: Ordinary Differential Equations. MIT Press (1973)

    Google Scholar 

  3. Arslan, O., Guralnik, D.P., Koditschek, D.E.: Navigation of distinct Euclidean particles via hierarchical clustering (extended version). Technical report, University of Pennsylvania (2013). http://kodlab.seas.upenn.edu/Omur/TechReport2013

  4. Arslan, O., Guralnik, D., Koditschek, D.E.: Discriminative measures for comparison of phylogenetic trees. Technical report, University of Pennsylvania (2013). http://arxiv.org/abs/1310.5202

  5. Arslan, O., Guralnik, D.P., Koditschek, D.E.: Hierarchically clustered navigation of distinct euclidean particles. In: 50th Annual Allerton Conference on Communication, Control, and Computing (2012). http://kodlab.seas.upenn.edu/Main/Allerton2012

  6. Ayanian, N., Kumar, V., Koditschek, D.: Synthesis of controllers to create, maintain, and reconfigure robot formations with communication constraints. In: Robotics Research. Springer Tracts in Advanced Robotics, vol. 70, pp. 625–642 (2011)

    Google Scholar 

  7. Baryshnikov, Y., Bubenik, P., Kahle, M.: Min-type Morse theory for configuration spaces of hard spheres. International Mathematics Research Notices (2013)

    Google Scholar 

  8. Billera, L.J., Holmes, S.P., Vogtmann, K.: Geometry of the space of phylogenetic trees. Adv. Appl. Math. 27(4), 733–767 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  9. Burridge, R.R., Rizzi, A.A., Koditschek, D.E.: Sequential composition of dynamically dexterous robot behaviors. Int. J. Robot. Res. 18(6), 534–555 (1999)

    Article  Google Scholar 

  10. Choi, Y.C., Ahn, H.S.: Formation control of quad-rotors in three dimension based on Euclidean distance dynamics matrix. In: 2011 11th International Conference on Control, Automation and Systems (ICCAS), pp. 1168–1173 (2011)

    Google Scholar 

  11. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms, 3rd edn. The MIT Press (2009)

    Google Scholar 

  12. Coxeter, H.S.M., Greitzer, S.L.: Geometry Revisited, vol. 19. Mathematical Association of America (1996)

    Google Scholar 

  13. DasGupta, B., He, X., Jiang, T., Li, M., Tromp, J., Zhang, L.: On distances between phylogenetic trees. In: Proceedings of the 8th Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 427–436. Society for Industrial and Applied Mathematics (1997)

    Google Scholar 

  14. Dimarogonas, D.V., Loizou, S.G., Kyriakopoulos, K.J., Zavlanos, M.M.: A feedback stabilization and collision avoidance scheme for multiple independent non-point agents. Automatica 42(2), 229–243 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  15. Fadell, E.R., Husseini, S.Y.: Geometry and Topology of Configuration Spaces. Springer (2001)

    Google Scholar 

  16. Felsenstein, J.: Inferring Phylogenies. Sinauer Associates, Inc. (2004)

    Google Scholar 

  17. Hatcher, A.: Algebraic Topology. Cambridge University Press (2002)

    Google Scholar 

  18. Jain, A.K., Dubes, R.C.: Algorithms for Clustering Data. Prentice-Hall, Inc. (1988)

    Google Scholar 

  19. Karagoz, C.S., Bozma, H.I., Koditschek, D.E.: Coordinated motion of disk-shaped independent robots in 2d workspaces. University Michigan, Ann Arbor, Technical report. CSE-TR-486-04, February (2004)

    Google Scholar 

  20. Koditschek, D.E.: Adaptive techniques for mechanical systems. In: Proceedings of the 5th, Yale Workshop on Adaptive Systems, May 1987, pp. 259–265 (1987)

    Google Scholar 

  21. Koditschek, D.E.: Some applications of natural motion control. J. Dyn. Syst., Meas., Control 113, 552–557 (1991)

    Article  MATH  Google Scholar 

  22. Liu, Y.H., Kuroda, S., Naniwa, T., Noborio, H., Arimoto, S.: A practical algorithm for planning collision-free coordinated motion of multiple mobile robots. In: Proceedings of the 1989 IEEE International Conference on Robotics and Automation, pp. 1427–1432 (1989)

    Google Scholar 

  23. Liu, Y.H., Arimoto, S., Noborio, H.: New solid model HSM and its application to interference detection between moving objects. J. Robot. Syst. 8(1), 39–54 (1991)

    Article  Google Scholar 

  24. Lozano-Perez, T., Mason, M.T., Taylor, R.H.: Automatic synthesis of fine-motion strategies for robots. Int. J. Robot. Res. 3(1), 3–24 (1984)

    Article  Google Scholar 

  25. Mirkin, B.: Mathematical Classification and Clustering. Kluwer Academic Publishers (1996)

    Google Scholar 

  26. Moore, G., Goodman, M., Barnabas, J.: An iterative approach from the standpoint of the additive hypothesis to the dendrogram problem posed by molecular data sets. J. Theor. Biol. 38(3), 423–457 (1973)

    Article  Google Scholar 

  27. Oh, K.K., Ahn, H.S.: Distance-based formation control using euclidean distance dynamics matrix: three-agent case. In: American Control Conference (ACC), July 2011, pp. 4810–4815 (2011)

    Google Scholar 

  28. Rimon, E., Koditschek, D.: Exact robot navigation using artificial potential functions. IEEE Trans. Robot. Autom. 8(5), 501–518 (1992)

    Article  Google Scholar 

  29. Robinson, D.: Comparison of labeled trees with valency three. J. Comb. Theory, Ser. B 11(2), 105–119 (1971)

    Article  Google Scholar 

  30. Savaresi, S.M., Boley, D.L.: On the performance of bisecting k-means and PDDP. In: Proceedings of the First SIAM International Conference on Data Mining (ICDM 2001), pp. 1–14 (2001)

    Google Scholar 

  31. Solovey, K., Halperin, D.: k-color multi-robot motion planning. Int. J. Robot. Res. 33(1), 82–97 (2014)

    Article  Google Scholar 

  32. Spirakis, P., Yap, C.K.: Strong np-hardness of moving many discs. Inf. Process. Lett. 19(1), 55–59 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  33. Tanner, H., Boddu, A.: Multiagent navigation functions revisited. IEEE Trans. Robot. 28(6), 1346–1359 (2012)

    Article  Google Scholar 

  34. Turpin, M., Michael, N., Kumar, V.: Concurrent assignment and planning of trajectories for large teams of interchangeable robots. In: 2013 IEEE International Conference on Robotics and Automation (ICRA), pp. 842–848, IEEE. (2013)

    Google Scholar 

  35. Whitcomb, L.L., Koditschek, D.E., Cabrera, J.B.D.: Toward the automatic control of robot assembly tasks via potential functions: the case of 2-d sphere assemblies. In: Proceedings., 1992 IEEE International Conference on Robotics and Automation, pp. 2186–2191 (1992)

    Google Scholar 

  36. Whitcomb, L.L., Koditschek, D.E.: Automatic assembly planning and control via potential functions. In: Proceedings IROS91. IEEE/RSJ International Workshop on Intelligent Robots and Systems 91, Intelligence for Mechanical Systems, pp. 17–23 (1991)

    Google Scholar 

  37. Witten, I.H., Frank, E.: Data Mining: Practical Machine Learning Tools and Techniques. Morgan Kaufmann (2005)

    Google Scholar 

Download references

Acknowledgments

This work was supported in part by AFOSR under the CHASE MURI FA9550-10-1-0567 and in part by ONR under the HUNT MURI N00014070829.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Omur Arslan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Arslan, O., Guralnik, D.P., Koditschek, D.E. (2015). Navigation of Distinct Euclidean Particles via Hierarchical Clustering. In: Akin, H., Amato, N., Isler, V., van der Stappen, A. (eds) Algorithmic Foundations of Robotics XI. Springer Tracts in Advanced Robotics, vol 107. Springer, Cham. https://doi.org/10.1007/978-3-319-16595-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-16595-0_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-16594-3

  • Online ISBN: 978-3-319-16595-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics