Abstract
In this work, we present a novel method for blood vessel segmentation in fundus images based on a discriminatively trained, fully connected conditional random field model. Retinal image analysis is greatly aided by blood vessel segmentation as the vessel structure may be considered both a key source of signal, e.g. in the diagnosis of diabetic retinopathy, or a nuisance, e.g. in the analysis of pigment epithelium or choroid related abnormalities. Blood vessel segmentation in fundus images has been considered extensively in the literature, but remains a challenge largely due to the desired structures being thin and elongated, a setting that performs particularly poorly using standard segmentation priors such as a Potts model or total variation. In this work, we overcome this difficulty using a discriminatively trained conditional random field model with more expressive potentials. In particular, we employ recent results enabling extremely fast inference in a fully connected model. We find that this rich but computationally efficient model family, combined with principled discriminative training based on a structured output support vector machine yields a fully automated system that achieves results statistically indistinguishable from an expert human annotator. Implementation details are available at http://pages.saclay.inria.fr/ matthew.blaschko/projects/retina/.
Chapter PDF
Similar content being viewed by others
References
Fraz, M.M., Remagnino, P., Hoppe, A., Uyyanonvara, B., Rudnicka, A.R., Owen, C.G., Barman, S.A.: Blood vessel segmentation methodologies in retinal images–a survey. Computer Methods and Programs in Biomedicine 108(1), 407–433 (2012)
Miri, M.S., Mahloojifar, A.: Retinal image analysis using curvelet transform and multistructure elements morphology by reconstruction. IEEE T-BME 58(5), 1183–1192 (2011)
Kanski, J.J., Bowling, B.: Synopsis of Clinical Ophthalmology. Saunders Limited (2012)
Li, Y., Gregori, G., Knighton, R.W., Lujan, B.J., Rosenfeld, P.J.: Registration of OCT fundus images with color fundus photographs based on blood vessel ridges. Optics Express 19(1), 7 (2011)
Ricci, E., Perfetti, R.: Retinal blood vessel segmentation using line operators and support vector classification. IEEE T-MI 26(10), 1357–1365 (2007)
Becker, C., Rigamonti, R., Lepetit, V., Fua, P.: Supervised feature learning for curvilinear structure segmentation. In: Mori, K., Sakuma, I., Sato, Y., Barillot, C., Navab, N. (eds.) MICCAI 2013, Part I. LNCS, vol. 8149, pp. 526–533. Springer, Heidelberg (2013)
Mendonca, A.M., Campilho, A.: Segmentation of retinal blood vessels by combining the detection of centerlines and morphological reconstruction. IEEE T-MI 25(9) (2006)
Martinez-Perez, M.E., Hughes, A.D., Thom, S.A., Bharath, A.A., Parker, K.H.: Segmentation of blood vessels from red-free and fluorescein retinal images. Medical Image Analysis 11(1), 47–61 (2007)
Zhang, B., Zhang, L., Zhang, L., Karray, F.: Retinal vessel extraction by matched filter with first-order derivative of Gaussian. Computers in Biology and Medicine 40(4), 438–445 (2010)
Nguyen, U.T., Bhuiyan, A., Park, L.A., Ramamohanarao, K.: An effective retinal blood vessel segmentation method using multi-scale line detection. Pattern Recognition (2012)
Fraz, M.M., Remagnino, P., Hoppe, A., Uyyanonvara, B., Rudnicka, A.R., Owen, C.G., Barman, S.A.: Ensemble classification system applied for retinal vessel segmentation on child images containing various vessel profiles. Image Analysis and Recognition (2012)
Vlachos, M., Dermatas, E.: Multi-scale retinal vessel segmentation using line tracking. Computerized Medical Imaging and Graphics 34(3), 213–227 (2010)
Li, S.Z.: Markov Random Field Modeling in Image Analysis, 3rd edn. Springer (2009)
Krähenbühl, P., Koltun, V.: Efficient inference in fully connected CRFs with Gaussian edge potentials. In: NIPS (2012)
Joachims, T., Finley, T., Yu, C.N.J.: Cutting-plane training of structural SVMs. Machine Learning 77(1), 27–59 (2009)
Staal, J., Abràmoff, M.D., Niemeijer, M., Viergever, M.A., van Ginneken, B.: Ridge based vessel segmentation in color images of the retina. IEEE T-MI 23(4), 501–509 (2004)
Schölkopf, B.: Support Vector Learning. PhD thesis, Oldenbourg Verlag, Munich (1997)
Soares, J.V., Leandro, J.J., Cesar, R.M., Jelinek, H.F., Cree, M.J.: Retinal vessel segmentation using the 2-d Gabor wavelet and supervised classification. IEEE T-MI 25(9) (2006)
Al-Rawi, M., Qutaishat, M., Arrar, M.: An improved matched filter for blood vessel detection of digital retinal images. Computers in Biology and Medicine 37(2), 262–267 (2007)
Frangi, A.F., Niessen, W.J., Vincken, K.L., Viergever, M.A.: Multiscale vessel enhancement filtering. In: Wells, W.M., Colchester, A.C.F., Delp, S.L. (eds.) MICCAI 1998. LNCS, vol. 1496, pp. 130–137. Springer, Heidelberg (1998)
Marín, D., Aquino, A., Gegúndez-Arias, M.E., Bravo, J.M.: A new supervised method for blood vessel segmentation in retinal images by using gray-level and moment invariants-based features. IEEE T-MI 30(1), 146–158 (2011)
Sinthanayothin, C., Boyce, J.F., Cook, H.L., Williamson, T.H.: Automated localisation of the optic disc, fovea, and retinal blood vessels from digital colour fundus images. British Journal of Ophthalmology 83(8), 902–910 (1999)
Saleh, M.D., Eswaran, C.: An efficient algorithm for retinal blood vessel segmentation using h-maxima transform and multilevel thresholding. Computer Methods in Biomechanics and Biomedical Engineering 15(5), 517–525 (2012)
Zana, F., Klein, J.-C.: Segmentation of vessel-like patterns using mathematical morphology and curvature evaluation. IEEE TIP 10(7), 1010–1019 (2001)
You, X., Peng, Q., Yuan, Y., Cheung, Y.-M., Lei, J.: Segmentation of retinal blood vessels using the radial projection and semi-supervised approach. Pattern Recognition 44(10) (2011)
Palomera-Pérez, M.A., Martinez-Perez, M.E., Benítez-Pérez, H., Ortega-Arjona, J.L.: Parallel multiscale feature extraction and region growing: application in retinal blood vessel detection. IEEE T-ITB 14(2), 500–506 (2010)
Al-Diri, B., Hunter, A., Steel, D.: An active contour model for segmenting and measuring retinal vessels. IEEE T-MI 28(9), 1488–1497 (2009)
Espona, L., Carreira, M.J., Penedo, M.G., Ortega, M.: Retinal vessel tree segmentation using a deformable contour model. In: ICPR (2008)
Espona, L., Carreira, M.J., Ortega, M., Penedo, M.G.: A snake for retinal vessel segmentation. In: Martí, J., Benedí, J.M., Mendonça, A.M., Serrat, J. (eds.) IbPRIA 2007. LNCS, vol. 4478, pp. 178–185. Springer, Heidelberg (2007)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer International Publishing Switzerland
About this paper
Cite this paper
Orlando, J.I., Blaschko, M. (2014). Learning Fully-Connected CRFs for Blood Vessel Segmentation in Retinal Images. In: Golland, P., Hata, N., Barillot, C., Hornegger, J., Howe, R. (eds) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2014. MICCAI 2014. Lecture Notes in Computer Science, vol 8673. Springer, Cham. https://doi.org/10.1007/978-3-319-10404-1_79
Download citation
DOI: https://doi.org/10.1007/978-3-319-10404-1_79
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-10403-4
Online ISBN: 978-3-319-10404-1
eBook Packages: Computer ScienceComputer Science (R0)