Abstract
Traditional approaches to upper body pose estimation using monocular vision rely on complex body models and a large variety of geometric constraints. We argue that this is not ideal and instead attempt to incorporate these constraints through priors obtained directly from training data, by fitting a Gaussian mixture model to a large dataset of recorded human body poses, tracked using a Kinect sensor. We combine this information with a random walk transition model to obtain an upper body model that can be viewed as a mixture of discrete Ornstein-Uhlenbeck processes, in that states behave as random walks, but drift towards a set of typically observed poses. The suggested model is designed with analytical tractability in mind and we show that the pose tracking can be Rao-Blackwellised using the mixture Kalman filter, allowing for computational efficiency while still incorporating bio-mechanical properties of the upper body.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Alspach, D., Sorenson, H.: Nonlinear Bayesian estimation using Gaussian sum approximations. IEEE Transactions on Automatic Control 17(4), 439–448 (1972)
Charles, J., Pfister, T., Everingham, M., Zisserman, A.: Automatic and efficient human pose estimation for sign language videos. International Journal of Computer Vision (2013)
Chen, R., Liu, J.S.: Mixture Kalman filters. Journal of the Royal Statistical Society: Series B (Statistical Methodology) 62(3), 493–508 (2000)
Davison, A.J., Deutscher, J., Reid, I.D.: Markerless motion capture of complex full-body movement for character animation. In: Proceedings of the Eurographic Workshop on Computer Animation and Simulation, pp. 3–14. Springer-Verlag New York, Inc., New York (2001)
Deutscher, J., Blake, A., Reid, I.: Articulated body motion capture by annealed particle filtering. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, vol. 2, pp. 126–133 (2000)
Doucet, A., Godsill, S., Andrieu, C.: On sequential Monte Carlo sampling methods for Bayesian filtering. Statistics and Computing 10(3), 197–208 (2000)
Eichner, M., Marin-Jimenez, M., Zisserman, A., Ferrari, V.: 2D articulated human pose estimation and retrieval in (almost) unconstrained still images. International Journal of Computer Vision 99, 190–214 (2012)
Gavrila, D.M., Davis, L.S.: Tracking of humans in action: A 3-D model-based approach. In: Proc. ARPA Image Understanding Workshop, pp. 737–746 (1996)
Germann, M., Popa, T., Ziegler, R., Keiser, R., Gross, M.H.: Space-time body pose estimation in uncontrolled environments. In: 3DIMPVT 2011, pp. 244–251 (2011)
Howe, N.R., Leventon, M.E., Freeman, W.T.: Bayesian reconstruction of 3D human motion from single-camera video. In: Advances in Neural Information Processing Systems. pp. 820–826. MIT Press (1999)
Hua, G., Yang, M., Wu, Y.: Learning to estimate human pose with data driven belief propagation. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 2005, vol. 2, pp. 747–754 (June 2005)
Kalman, R.E.: A new approach to linear filtering and prediction problems. Transactions of the ASME–Journal of Basic Engineering 82(Series D), 35–45 (1960)
Lee, M.W., Cohen, I.: Human upper body pose estimation in static images. In: Pajdla, T., Matas, J(G.) (eds.) ECCV 2004. LNCS, vol. 3022, pp. 126–138. Springer, Heidelberg (2004)
Ristic, B., Arulampalam, S., Gordon, N.: Beyond the Kalman Filter: Particle Filters for Tracking Applications. Artech House (2004)
Shotton, J., Fitzgibbon, A., Cook, M., Sharp, T., Finocchio, M., Moore, R., Kipman, A., Blake, A.: Real-time human pose recognition in parts from single depth images. In: Computer Vision and Pattern Recognition (June 2011)
Sminchisescu, C., Triggs, B.: Covariance-scaled sampling for monocular 3D body tracking. In: IEEE International Conference on Computer Vision and Pattern Recognition, Hawaii, vol. 1, pp. 447–454 (2001)
Yang, Y., Ramanan, D.: Articulated pose estimation with flexible mixtures-of-parts. In: Proceedings of the 2011 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2011, pp. 1385–1392. IEEE Computer Society, Washington, DC (2011)
Yu, T.H., Kim, T.K., Cipolla, R.: Unconstrained monocular 3D human pose estimation by action detection and cross-modality regression forest. In: Proceedings of the 2013 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2013, pp. 3642–3649. IEEE Computer Society, Washington, DC (2013)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer International Publishing Switzerland
About this paper
Cite this paper
Burke, M., Lasenby, J. (2014). Fast Upper Body Joint Tracking Using Kinect Pose Priors. In: Perales, F.J., Santos-Victor, J. (eds) Articulated Motion and Deformable Objects. AMDO 2014. Lecture Notes in Computer Science, vol 8563. Springer, Cham. https://doi.org/10.1007/978-3-319-08849-5_10
Download citation
DOI: https://doi.org/10.1007/978-3-319-08849-5_10
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-08848-8
Online ISBN: 978-3-319-08849-5
eBook Packages: Computer ScienceComputer Science (R0)