Abstract
In this article we present the application of novel noise measure in ensemble method based on blind signal separation methods. In this approach we decompose the set of models’ results into basis latent components with destructive or constructive impact on the prediction. The crucial step in such model aggregation is proper identification of destructive components which can be treated as noisy factors. Presented method assesses the randomness of signals using a new measure of variability which helps to compare analyzed signal with some typical noise models. The experiments performed on electric load data using different blind separation algorithms contributed to model improvements.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Anscombe, F.J.: Graphs in statistical analysis. The American Statistician 27, 17–21 (1973)
Breiman, L.: Bagging predictors. Machine Learning 24, 123–140 (1996)
Cichocki, A., Amari, S.: Adaptive Blind Signal and Image Processing. John Wiley, Chichester (2002)
Cichocki, A., Amari, S., Siwek, K., Tanaka, T., Phan, A.H., Zdunek, R., Cruces, S., Georgiev, P., Washizawa, Y., Leonowicz, Z., Bakardjian, H., Rutkowski, T., Choi, S., Belouchrani, A., Barros, A., Thawonmas, R., Hoya, T., Hashimoto, W., Terazono, Y.: ICALAB Toolboxes, http://www.bsp.brain.riken.jp/ICALAB
Clements, R.T.: Combining forecasts: A review and annotated bibliography. International Journal of Forecasting 5, 559–581 (1989)
Comon, P., Jutten, C.: Handbook of Blind Source Separation: Independent Component Analysis and Applications. Academic Press (2010)
Hamilton, J.D.: Time series analysis. Princeton University Press, Princeton (1994)
Haykin, S.: Neural networks: a comprehensive foundation. Macmillan, New York (1994)
Hoeting, J., Madigan, D., Raftery, A., Volinsky, C.: Bayesian model averaging: a tutorial. Statistical Science 14, 382–417 (1999)
Hurst, H.E.: Long term storage capacity of reservoirs. Transactions of the American Society of Civil Engineers 116, 770–799 (1951)
Hyvarinen, A., Karhunen, J., Oja, E.: Independent Component Analysis. John Wiley, New York (2001)
Rodgers, J.L., Nicewander, W.A.: Thirteen ways to look at the correlation coefficient. The American Statistician 42(1), 59–66 (1988)
Shiryaev, A.N.: Essentials of stochastic finance: facts, models, theory. World Scientific Publishing, Singapore (1999)
Szupiluk, R., Wojewnik, P., Zabkowski, T.: Model Improvement by the Statistical Decomposition. In: Rutkowski, L., Siekmann, J.H., Tadeusiewicz, R., Zadeh, L.A. (eds.) ICAISC 2004. LNCS (LNAI), vol. 3070, pp. 1199–1204. Springer, Heidelberg (2004)
Szupiluk, R., Wojewnik, P., Ząbkowski, T.: Prediction Improvement via Smooth Component Analysis and Neural Network Mixing. In: Kollias, S.D., Stafylopatis, A., Duch, W., Oja, E. (eds.) ICANN 2006. LNCS, vol. 4132, pp. 133–140. Springer, Heidelberg (2006)
Szupiluk, R., Wojewnik, P., Zabkowski, T.: Noise detection for ensemble methods. In: Rutkowski, L., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2010, Part I. LNCS (LNAI), vol. 6113, pp. 471–478. Springer, Heidelberg (2010)
Therrien, C.W.: Discrete Random Signals and Statistical Signal Processing. Prentice Hall, New Jersey (1992)
Vaseghi, S.V.: Advanced signal processing and digital noise reduction. John Wiley and Sons, Chichester (1997)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer International Publishing Switzerland
About this paper
Cite this paper
Szupiluk, R., Ząbkowski, T. (2014). Signal Randomness Measure for BSS Ensemble Predictors. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds) Artificial Intelligence and Soft Computing. ICAISC 2014. Lecture Notes in Computer Science(), vol 8468. Springer, Cham. https://doi.org/10.1007/978-3-319-07176-3_50
Download citation
DOI: https://doi.org/10.1007/978-3-319-07176-3_50
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-07175-6
Online ISBN: 978-3-319-07176-3
eBook Packages: Computer ScienceComputer Science (R0)