Abstract
Process discovery algorithms typically aim at discovering a process model from an event log that best describes the recorded behavior. However, multiple quality dimensions can be used to evaluate a process model. In previous work we showed that there often is not one single process model that describes the observed behavior best in all quality dimensions. Therefore, we present an extension to our flexible ETM algorithm that does not result in a single best process model but in a collection of mutually non-dominating process models. This is achieved by constructing a Pareto front of process models. We show by applying our approach on a real life event log that the resulting collection of process models indeed contains several good candidates. Furthermore, by presenting a collection of process models, we show that it allows the user to investigate the different trade-offs between different quality dimensions.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
ProM is available for download from http://www.processmining.org/, the ETM algorithm is included in the ‘EvolutionaryTreeMiner’ package.
- 2.
More information about the CoSeLoG project can be found at http://www.win.tue.nl/coselog/.
References
van der Aalst, W.M.P.: Process Mining: Discovery, Conformance and Enhancement of Business Processes. Springer, Heidelberg (2011)
van der Aalst, W.M.P., Adriansyah, A., van Dongen, B.F.: Replaying history on process models for conformance checking and performance analysis. WIREs Data Min. Knowl. Disc. 2(2), 182–192 (2012)
Awad, A., Decker, G., Weske, M.: Efficient compliance checking using BPMN-Q and temporal logic. In: Dumas, M., Reichert, M., Shan, M.-C. (eds.) BPM 2008. LNCS, vol. 5240, pp. 326–341. Springer, Heidelberg (2008)
Bui, L.T., Essam, D., Abbass, H.A., Green, D.: Performance analysis of evolutionary multi-objective optimization methods in noisy environments. In: Proceedings of the 8th Asia Pacific Symposium on Intelligent and Evolutionary Systems, pp. 29–39 (2004)
Buijs, J.C.A.M., van Dongen, B.F., van der Aalst, W.M.P.: On the role of fitness, precision, generalization and simplicity in process discovery. In: Meersman, R., Panetto, H., Dillon, T., Rinderle-Ma, S., Dadam, P., Zhou, X., Pearson, S., Ferscha, A., Bergamaschi, S., Cruz, I.F. (eds.) OTM 2012, Part I. LNCS, vol. 7565, pp. 305–322. Springer, Heidelberg (2012)
Buijs, J.C.A.M., La Rosa, M., Reijers, H.A., van Dongen, B.F., van der Aalst, W.M.P.: Improving business process models using observed behavior. In: Cudre-Mauroux, P., Ceravolo, P., Gašević, D. (eds.) SIMPDA 2012. LNBIP, vol. 162, pp. 44–59. Springer, Heidelberg (2013)
Deb, K.: Multi-objective optimization. In: Burke, E.K., Kendall, G. (eds.) Search Methodologies, pp. 273–316. Springer, US (2005)
Deb, K., Agrawal, S., Pratap, A., Meyarivan, T.: A fast elitist non-dominated sorting genetic algorithm for multi-objective optimization: NSGA-II. In: Schoenauer, M., Deb, K., Rudolph, G., Yao, X., Lutton, E., Merelo, J.J., Schwefel, H.P. (eds.) PPSN 2000. LNCS, vol. 1917, pp. 849–858. Springer, Heidelberg (2000)
Governatori, G., Rotolo, A.: An algorithm for business process compliance. In: JURIX, pp. 186–191 (2008)
Hiroyasu, T., Nakayama, S., Miki, M.: Comparison study of SPEA2\(+\), SPEA2, and NSGA-II in diesel engine emissions and fuel economy problem. In: The 2005 IEEE Congress on Evolutionary Computation 2005, vol. 1, pp. 236–242 (2005)
Pareto, V.: Cours D’Economie Politique, vols. I and II. F. Rouge, Lausanne (1896)
Pika, A., van der Aalst, W.M.P., Fidge, C.J., ter Hofstede, A.H.M., Wynn, M.T.: Predicting deadline transgressions using event logs. In: La Rosa, M., Soffer, P. (eds.) BPM Workshops 2012. LNBIP, vol. 132, pp. 211–216. Springer, Heidelberg (2013)
Raisanen, L., Whitaker, R.M.: Comparison and evaluation of multiple objective genetic algorithms for the antenna placement problem. Mob. Netw. Appl. 10(1–2), 79–88 (2005)
Ramezani Taghiabadi, E., Fahland, D., van Dongen, B.F., van der Aalst, W.M.P.: Diagnostic information for compliance checking of temporal compliance requirements. In: Salinesi, C., Norrie, M.C., Pastor, Ó. (eds.) CAiSE 2013. LNCS, vol. 7908, pp. 304–320. Springer, Heidelberg (2013)
Suriadi, S., Ouyang, C., van der Aalst, W.M.P., ter Hofstede, A.H.M.: Root cause analysis with enriched process logs. In: La Rosa, M., Soffer, P. (eds.) BPM Workshops 2012. LNBIP, vol. 132, pp. 174–186. Springer, Heidelberg (2013)
van Veldhuizen, D.A., Lamont, G.B.: Evolutionary computation and convergence to a pareto front. In: Late Breaking Papers at the Genetic Programming 1998 Conference, pp. 221–228 (1998)
Wynn, M.T., Low, W.Z., Nauta, W.: A framework for cost-aware process management: generation of accurate and timely management accounting cost reports. In: Asia-Pacific Conference on Conceptual Modelling (2013)
Zitzler, E., Laumanns, M., Thiele, L.: SPEA2: improving the strength pareto evolutionary algorithm for multiobjective optimization. In: Proceedings of the EUROGEN2001 Conference: Evolutionary Methods for Design, Optimisation and Control with Application to Industrial Problems, Athens, Greece, 19–21 September 2001
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer International Publishing Switzerland
About this paper
Cite this paper
Buijs, J.C.A.M., van Dongen, B.F., van der Aalst, W.M.P. (2014). Discovering and Navigating a Collection of Process Models Using Multiple Quality Dimensions. In: Lohmann, N., Song, M., Wohed, P. (eds) Business Process Management Workshops. BPM 2013. Lecture Notes in Business Information Processing, vol 171. Springer, Cham. https://doi.org/10.1007/978-3-319-06257-0_1
Download citation
DOI: https://doi.org/10.1007/978-3-319-06257-0_1
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-06256-3
Online ISBN: 978-3-319-06257-0
eBook Packages: Computer ScienceComputer Science (R0)