[go: up one dir, main page]

Skip to main content

Systematic Dynamic and Heterogeneous Analysis of Rich Social Network Data

  • Conference paper
Complex Networks V

Part of the book series: Studies in Computational Intelligence ((SCI,volume 549))

Abstract

Recent technological advances have lead to increasing amounts of social network data that is longitudinal or encompasses multiple link types.We aim to provide a framework for systematic analysis of such data. We validate the framework on a unique and rich social network, by studying the evolution of network structure over an 18-month period as well as the relationships between different communication types (including both digital (e.g., Facebook) and face-to-face interactions).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Balthrop, J., Forrest, S., Newman, M.E.J., Williamson, M.M.: Technological networks and the spread of computer viruses. Science 304(5670), 527–529 (2004)

    Article  Google Scholar 

  2. Berger-wolf, T.Y., Saia, J.: A framework for analysis of dynamic social networks. In: Proceedings of ACM KDD, pp. 523–528 (2006)

    Google Scholar 

  3. Davis, D., Lichtenwalter, R., Chawla, N.: Multi-relational link prediction in heterogeneous information networks. In: Proceedings of ASONAM, pp. 281–288 (2011)

    Google Scholar 

  4. Dong, Y., Tang, J., Wu, S., Tian, J., Chawla, N.V., Rao, J., Cao, H.: Link prediction and recommendation across heterogeneous social networks. In: Proceedings of ICDM, pp. 181–190 (2012)

    Google Scholar 

  5. Eagle, N., Pentland, A.: Reality mining: sensing complex social systems. Personal Ubiquitous Computing 10(4), 255–268 (2006)

    Article  Google Scholar 

  6. Eagle, N., Pentland, A., Lazer, D.: Inferring friendship network structure by using mobile phone data. PNAS 106(36), 15,274–15,278 (2009)

    Google Scholar 

  7. Eagle, N., Pentland, A., Lazer, D.: Inferring friendship network structure by using mobile phone data. PNAS 106(36), 15,274–15,278 (2009)

    Google Scholar 

  8. Emmert-Streib, F., Dehmer, M.: Influence of the time scale on the construction of financial networks. PLoS ONE 5(9), e12,884 (2010), doi:10.1371/journal.pone.0012884

    Google Scholar 

  9. Faloutsos, M., Faloutsos, P., Faloutsos, C.: On power-law relationships of the Internet topology. ACM SIGCOMM Computing Communication Review 29(4), 251–262 (1999)

    Article  Google Scholar 

  10. Fortunato, S.: Community detection in graphs. Phys. Rev. E 486, 75–174 (2010)

    MathSciNet  Google Scholar 

  11. Greene, D., Doyle, D., Cunningham, P.: Tracking the evolution of communities in dynamic social networks. In: Proceedings of IEEE/ACM ASONAM, pp. 176–183 (2010)

    Google Scholar 

  12. Guy, I., Zwerdling, N., Ronen, I., Carmel, D., Uziel, E.: Social media recommendation based on people and tags. In: Proceedings of ACM SIGIR, pp. 194–201 (2010)

    Google Scholar 

  13. Hayes, W., Sun, K., Pržulj, N.: Graphlet-based measures are suitable for biological network comparison. Bioinformatics 29(4), 483–491 (2013)

    Article  Google Scholar 

  14. Kumar, R., Novak, J., Tomkins, A.: Structure and evolution of online social networks. In: Link Mining: Models, Algorithms, and Applications, pp. 337–357. Springer (2010)

    Google Scholar 

  15. Leskovec, J., Kleinberg, J., Faloutsos, C.: Graphs over time: densification laws, shrinking diameters and possible explanations. In: Proceedings of ACM SIGKDD, pp. 177–187 (2005)

    Google Scholar 

  16. Lewis, K., Kaufman, J., Gonzalez, M., Wimmer, A., Christakis, N.: Tastes, ties, and time: A new (cultural, multiplex, and longitudinal) social network dataset using facebook.com. Social Networks (2008)

    Google Scholar 

  17. Liu, S., Jiang, Y., Striegel, A.: Face-to-face proximity estimation using bluetooth on smartphones. IEEE Transactions on Mobile Computing, 1 (2013)

    Google Scholar 

  18. Masuda, N., Holme, P.: Predicting and controlling infectious disease epidemics using temporal networks. F1000Prime Rep. 5, 6 (2013)

    Google Scholar 

  19. Mesch, G., Talmud, I.: The quality of online and offline relationships: The role of multiplexity and duration of social relationships. Information Society 22, 137–148 (2006)

    Article  Google Scholar 

  20. Milenković, T., Ng, W.L., Hayes, W., Pržulj, N.: Optimal network alignment with graphlet degree vectors. Cancer Informatics 9, 121 (2010)

    Article  Google Scholar 

  21. Mislove, A., Marcon, M., Gummadi, K., Druschel, P., Bhattacharjee, B.: Measurement and analysis of online social networks. In: Proceedings of ACM IMC, pp. 29–42 (2007)

    Google Scholar 

  22. Newman, M.: Networks: an introduction. Oxford University Press (2009)

    Google Scholar 

  23. Newman, M.E.J.: Scientific collaboration networks. ii. shortest paths, weighted networks, and centrality. Phys. Rev. E 64, 016,132 (2001)

    Google Scholar 

  24. Newman, M.E.J.: Modularity and community structure in networks. PNAS 103(23), 8577–8582 (2006)

    Article  Google Scholar 

  25. Palla, G., Barabsi, A., Vicsek, T., Hungary, B.: Quantifying social group evolution. Nature 446 (2007)

    Google Scholar 

  26. Pržulj, N.: Biological network comparison using graphlet degree distribution. Bioinformatics 23(2), e177–e183 (2007)

    Google Scholar 

  27. Solava, R.W., Michaels, R.P., Milenković, T.: Graphlet-based edge clustering reveals pathogen-interacting proteins. Bioinformatics 28(18), i480–i486 (2012)

    Google Scholar 

  28. Striegel, A., Liu, S., Meng, L., Poellabauer, C., Hachen, D., Lizardo, O.: Lessons learned from the netsense smartphone study. In: Proceedings of ACM HotPlanet, pp. 51–56 (2013)

    Google Scholar 

  29. Sun, Y., Yu, Y., Han, J.: Ranking-based clustering of heterogeneous information networks with star network schema. In: Proceedings of ACM KDD, pp. 797–806 (2009)

    Google Scholar 

  30. Wang, X., Sukthankar, G.: Link prediction in multi-relational collaboration networks. In: Proceedings of ACM ASONAM, pp. 1445–1447 (2013)

    Google Scholar 

  31. Wilson, C., Boe, B., Sala, A., Puttaswamy, K.P.N., Zhao, B.: User interactions in social networks and their implications. In: Proceedings of ACM EuroSys, pp. 205–218 (2009)

    Google Scholar 

  32. Yang, Y., Chawla, N., Sun, Y., Han, J.: Predicting links in multi-relational and heterogeneous networks. In: Proceedings of IEEE ICDM, pp. 755–764 (2012)

    Google Scholar 

  33. Ye, J., Chen, K., Wu, T., Li, J., Zhao, Z., Patel, R., Bae, M., Janardan, R., Liu, H., Alexander, G., Reiman, E.: Heterogeneous data fusion for Alzheimers disease study. In: Proceedings of KDD, pp. 1025–1033 (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lei Meng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Meng, L., Milenković, T., Striegel, A. (2014). Systematic Dynamic and Heterogeneous Analysis of Rich Social Network Data. In: Contucci, P., Menezes, R., Omicini, A., Poncela-Casasnovas, J. (eds) Complex Networks V. Studies in Computational Intelligence, vol 549. Springer, Cham. https://doi.org/10.1007/978-3-319-05401-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-05401-8_3

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-05400-1

  • Online ISBN: 978-3-319-05401-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics