[go: up one dir, main page]

Skip to main content

A New Algorithm of Electronic Cleansing for Weak Faecal-Tagging CT Colonography

  • Conference paper
Machine Learning in Medical Imaging (MLMI 2013)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 8184))

Included in the following conference series:

Abstract

CT Colonography (CTC) has emerged as a mainstream clinical practice of colonic cancer screening and diagnosis. One of the most critical problems is to increase compliance with CTC examinations via minimal bowel preparation (i.e., weak faecal-tagging), which nevertheless causes much lower signal-noise-ratio than conventional preparation.

In this paper, we present a new algorithm pipeline of electronically cleansing tagging materials in CTC under reduced oral contrast dose. Our method has the following steps: 1, robust structure parsing to generate a list of volume regions of interest (ROIs) of tagging material (avoiding bone erosion); 2, effectively locating local tagging-air (AT) transitional surface regions; 3, a novel discriminative-generative algorithm to learn the higher-order image appearance model in AT using 3D Markov Random Fields (MRF); 4, accurate probability density function based voxel labeling corresponding to semantic classes. Validated on 26 weak faecal-tagging CTC cases from 3 medical sites, our method yields better visualization clarity and readability compared with the previous approach [1]. The whole system computes efficiently (e.g., < 40 seconds for CT images of 512×512×1000 +).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Wang, Z., Liang, Z., et al.: An Improved Electronic Colon Cleansing Method for Detection of Colonic Polyps by Virtual Colonoscopy. IEEE Trans. Biomed. Engi. 53, 1635–1646 (2006)

    Article  Google Scholar 

  2. Serlie, I., Vos, F., Truyen, R., Post, F., Stoker, J., van Vliet, L.: Electronic Cleansing for Computed Tomography (CT) Colonography Using a Scale-Invariant Three-Material Model. IEEE Trans. Biomed. Engi. 57, 1306–1317 (2010)

    Article  Google Scholar 

  3. Liedenbaum, M., Denters, M., Zijta, F., van Ravesteijn, V., Bipat, S., Vos, F., Dekker, E., Stoker, J.: Reducing the oral contrast dose in CT colonography: evaluation of faecal tagging quality and patient acceptance. Clin. Radiol., 30–37 (2010)

    Google Scholar 

  4. Lu, L., Wolf, M., Liang, J., Dundar, M., Bi, J., Salganicoff, M.: A Two-level Approach Towards Semantic Colon Segmentation: Removing Extra-colonic Findings. In: Yang, G.-Z., Hawkes, D., Rueckert, D., Noble, A., Taylor, C. (eds.) MICCAI 2009, Part II. LNCS, vol. 5762, pp. 1009–1016. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  5. Wu, T., Jian, B., Zhou, X.S.: Automated identification of thoracolumbar vertebrae using orthogonal matching pursuit. In: Suzuki, K., Wang, F., Shen, D., Yan, P. (eds.) MLMI 2011. LNCS, vol. 7009, pp. 126–133. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  6. Lepetit, V., Fua, P.: Keypoint recognition using randomized trees. IEEE Trans. Pat. Anal. Mach. Intell. 28, 1465–1479 (2006)

    Article  Google Scholar 

  7. Comaniciu, D., Meer, P.: Mean Shift: A Robust Approach Toward Feature Space Analysis. IEEE Trans. Pat. Anal. Mach. Intell. 24(5), 603–619 (2002)

    Article  Google Scholar 

  8. Tu, Z.: Probabilistic boosting-tree: Learning discriminative models for classification, recognition, and clustering. In: ICCV, pp. 1589–1596 (2005)

    Google Scholar 

  9. Cover, T.M., Thomas, J.A.: Elements of information theory (1991)

    Google Scholar 

  10. Konishi, S., Yuille, A., Coughlan, J., Zhu, S.: Statistical edge detection: Learning and evaluating edge cues. IEEE Trans. Pat. Anal. Mach. Intell. 25, 57–74 (2003)

    Article  Google Scholar 

  11. Lu, L., et al.: Hierarchical learning for tubular structure parsing in medical imaging: A study on coronary arteries using 3D CT Angiography. In: ICCV (2009)

    Google Scholar 

  12. Boykov, Y., Funka-Lea, G.: Graph Cuts and Efficient N-D Image Segmentation. Int. J. Comp. Vis. 70(2), 109–131 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer International Publishing Switzerland

About this paper

Cite this paper

Lu, L., Jian, B., Wu, D., Wolf, M. (2013). A New Algorithm of Electronic Cleansing for Weak Faecal-Tagging CT Colonography. In: Wu, G., Zhang, D., Shen, D., Yan, P., Suzuki, K., Wang, F. (eds) Machine Learning in Medical Imaging. MLMI 2013. Lecture Notes in Computer Science, vol 8184. Springer, Cham. https://doi.org/10.1007/978-3-319-02267-3_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-02267-3_8

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-02266-6

  • Online ISBN: 978-3-319-02267-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics