[go: up one dir, main page]

Skip to main content

Optimizing BI-RADS 4 Lesion Assessment Using Lightweight Convolutional Neural Network with CBAM in Contrast Enhanced Mammography

  • Conference paper
  • First Online:
Artificial Intelligence and Imaging for Diagnostic and Treatment Challenges in Breast Care (Deep-Breath 2024)

Abstract

Breast cancer is the leading cause of cancer-related mortality and morbidity among women worldwide. Early detection plays a crucial role in improving survival rates and BI-RADS classification is one of the effective ways of predicting breast cancer. However, BI-RADS Category 4 encompasses a broad spectrum of malignancy probabilities, ranging from over 2% to 95%. Due to the wide malignancy likelihood range and the ambiguous qualitative attributes of BI-RADS 4, patients are subjected to overdiagnosis and unnecessary procedures, such as biopsy, which entail a certain degree of physical trauma as well as financial strain. This study proposed a lightweight CNN where MobileNet serves as the backbone architecture, augmented with the Convolutional Block Attention Module (CBAM), resulting in the MobileNet-CBAM model. The model demonstrated good performance in discriminating BI-RADS 4 category malignant and benign cases in Contrast Enhanced Spectral Mammogram (CESM) with a prediction of 82%, 82% and 0.91 for accuracy, f1-score and roc-auc respectively. Additionally, for clinical friendliness, the model explanation was given using SHAP. Hence, the model presents potential utility in predicting breast cancer for lesions categorized as BI-RADS category 4 in breast imaging.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Achak, A., Hedyehzadeh, M.: Determining the differentiation of benign and malignant nme lesions in contrast-enhanced spectral mammography images based on convolutional neural networks. J. Med. Biol. Eng. 43(5), 585–595 (2023)

    Article  Google Scholar 

  2. Boumaraf, S., Liu, X., Ferkous, C., Ma, X.: A new computer-aided diagnosis system with modified genetic feature selection for bi-rads classification of breast masses in mammograms. Biomed. Res. Int. 2020(1), 7695207 (2020)

    Article  Google Scholar 

  3. Chen, L., Yao, H., Fu, J., Ng, C.T.: The classification and localization of crack using lightweight convolutional neural network with cbam. Eng. Struct. 275, 115291 (2023)

    Article  Google Scholar 

  4. Chlap, P., Min, H., Vandenberg, N., Dowling, J., Holloway, L., Haworth, A.: A review of medical image data augmentation techniques for deep learning applications. J. Med. Imaging Radiat. Oncol. 65(5), 545–563 (2021)

    Article  Google Scholar 

  5. Clark, K., et al.: The cancer imaging archive (tcia): maintaining and operating a public information repository. J. Digit. Imaging 26, 1045–1057 (2013)

    Article  MATH  Google Scholar 

  6. Helal, M., et al.: Validation of artificial intelligence contrast mammography in diagnosis of breast cancer: Relationship to histopathological results. Eur. J. Radiol. 111392 (2024)

    Google Scholar 

  7. Kaya, Y., Gürsoy, E.: A mobilenet-based cnn model with a novel fine-tuning mechanism for covid-19 infection detection. Soft. Comput. 27(9), 5521–5535 (2023)

    Article  MATH  Google Scholar 

  8. Khaled, R., et al.: Categorized contrast enhanced mammography dataset for diagnostic and artificial intelligence research. Sci. Data 9(1), 122 (2022)

    Article  MATH  Google Scholar 

  9. Liu, H., et al.: A deep learning model integrating mammography and clinical factors facilitates the malignancy prediction of bi-rads 4 microcalcifications in breast cancer screening. Eur. Radiol. 31, 5902–5912 (2021)

    Article  MATH  Google Scholar 

  10. Long, R., et al.: Improving the diagnostic accuracy of breast bi-rads 4 microcalcification-only lesions using contrast-enhanced mammography. Clin. Breast Cancer 21(3), 256–262 (2021)

    Article  MATH  Google Scholar 

  11. Luo, L., et al.: Deep learning in breast cancer imaging: a decade of progress and future directions. IEEE Rev. Biomed. Eng. (2024)

    Google Scholar 

  12. Magny, S.J., Shikhman, R., Keppke, A.L.: Breast Imaging Reporting and Data System. In: StatPearls [Internet]. StatPearls publishing (2022)

    Google Scholar 

  13. Mao, N., et al.: Attention-based deep learning for breast lesions classification on contrast enhanced spectral mammography: a multicentre study. Br. J. Cancer 128(5), 793–804 (2023)

    Article  MATH  Google Scholar 

  14. Nan, Y., Ju, J., Hua, Q., Zhang, H., Wang, B.: A-mobilenet: an approach of facial expression recognition. Alex. Eng. J. 61(6), 4435–4444 (2022)

    Article  MATH  Google Scholar 

  15. Oladimeji, O.O., Ibitoye, A.O.J.: Brain tumor classification using resnet50-convolutional block attention module. Appl. Comput. Inf. (ahead-of-print) (2023)

    Google Scholar 

  16. Pang, B., Nijkamp, E., Wu, Y.N.: Deep learning with tensorflow: a review. J. Educ. Behav. Stat. 45(2), 227–248 (2020)

    Article  MATH  Google Scholar 

  17. Spak, D.A., Plaxco, J., Santiago, L., Dryden, M., Dogan, B.: Bi-rads® fifth edition: a summary of changes. Diagn. Interv. Imaging 98(3), 179–190 (2017)

    Article  Google Scholar 

  18. Tang, Y., Liang, M., Tao, L., Deng, M., Li, T.: Machine learning-based diagnostic evaluation of shear-wave elastography in bi-rads category 4 breast cancer screening: a multicenter, retrospective study. Quant. Imaging Med. Surg. 12(2), 1223 (2022)

    Article  MATH  Google Scholar 

  19. Wang, J., et al.: Information bottleneck-based interpretable multitask network for breast cancer classification and segmentation. Med. Image Anal. 83, 102687 (2023)

    Article  MATH  Google Scholar 

  20. Woo, S., Park, J., Lee, J.Y., Kweon, I.S.: Cbam: convolutional block attention module. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 3–19 (2018)

    Google Scholar 

  21. Yasin, R., El Ghany, E.A.: Birads 4 breast lesions: comparison of contrast-enhanced spectral mammography and contrast-enhanced mri. Egypt. J. Radiol. Nucl. Med. 50, 1–10 (2019)

    Article  MATH  Google Scholar 

  22. Yin, X., Goudriaan, J., Lantinga, E.A., Vos, J., Spiertz, H.J.: A flexible sigmoid function of determinate growth. Ann. Bot. 91(3), 361–371 (2003)

    Article  Google Scholar 

  23. Zhang, R., et al.: An MRI-based radiomics model for predicting the benignity and malignancy of bi-rads 4 breast lesions. Front. Oncol. 11, 733260 (2022)

    Article  Google Scholar 

  24. Zhang, S., et al.: Intra-and peritumoral radiomics for predicting malignant birads category 4 breast lesions on contrast-enhanced spectral mammography: a multicenter study. Eur. Radiol. 33(8), 5411–5422 (2023)

    Article  MATH  Google Scholar 

  25. Zhang, T., Mann, R.M.: Contrast-enhanced mammography: better with AI? Eur. Radiol. 34(2), 914–916 (2024)

    Article  MATH  Google Scholar 

  26. Zhang, T., et al.: Radiomics and artificial intelligence in breast imaging: a survey. Artif. Intell. Rev. 56(Suppl 1), 857–892 (2023)

    Article  MATH  Google Scholar 

Download references

Acknowledgments

This research is funded by the Modelling & Computation for Health And Society (MOCHAS) Postgraduate Research Training Programme (PRTP) Scholarship, Atlantic Technological University, Ireland .

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oladosu Oladimeji .

Editor information

Editors and Affiliations

Ethics declarations

Disclosure of Interests

The authors have no competing interests to declare that are relevant to the content of this article.

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Oladimeji, O., Ayaz, H., McLoughlin, I., Unnikrishnan, S. (2025). Optimizing BI-RADS 4 Lesion Assessment Using Lightweight Convolutional Neural Network with CBAM in Contrast Enhanced Mammography. In: Mann, R.M., et al. Artificial Intelligence and Imaging for Diagnostic and Treatment Challenges in Breast Care. Deep-Breath 2024. Lecture Notes in Computer Science, vol 15451. Springer, Cham. https://doi.org/10.1007/978-3-031-77789-9_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-77789-9_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-77788-2

  • Online ISBN: 978-3-031-77789-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics