Abstract
The widespread adoption of Artificial Intelligence (AI) in various domains has sparked concerns regarding privacy, security, transparency, fairness, reliability, and ethics. The General Data Protection Regulation (GDPR), implemented in 2018, has established crucial guidelines for data privacy and protection. Meanwhile, the AI Act, passed by the European Parliament in 2023, has been proposed to address the risks of specific uses of AI. However, the implications of these regulations for AI models, particularly in the context of mental state classification tasks, remain uncertain due to the inherent black-box nature of certain models. This paper delves into the specific challenges and risks associated with the development of EEG- (Electroencephalography) and AI-based systems for mental state classification, taking into account the principles outlined by the GDPR and the AI Act. This research sheds light on the challenges and responsibilities entailed in developing AI models for mental state classification while ensuring compliance with GDPR guidelines as well as the AI Act. It underscores the importance of adopting ethical and privacy-aware approaches within this critical domain and promotes the development of techniques that strike a balance between AI advancements and the protection of individual privacy.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Notes
- 1.
EEG is used to refer to either “electroencephalogram” or “electroencephalography”, which is the method by which electroencephalograms are acquired.
- 2.
The trained models are available at this link.
- 3.
- 4.
Implementation of ResNet-18 provided by torchvision at this link.
- 5.
GitHub repository of pytorch-memory-utils at this link.
- 6.
GitHub repository of pytorch-estimate-flops at this link.
References
Acı, Ç.İ, Kaya, M., Mishchenko, Y.: Distinguishing mental attention states of humans via an EEG-based passive BCI using machine learning methods. Expert Syst. Appl. 134, 153–166 (2019)
Alarcao, S.M., Fonseca, M.J.: Emotions recognition using EEG signals: a survey. IEEE Trans. Affect. Comput. 10(3), 374–393 (2017)
Almeida Teixeira, G., Mira da Silva, M., Pereira, R.: The critical success factors of GDPR implementation: a systematic literature review. Digital Policy, Regulation Governance 21(4), 402–418 (2019)
Apicella, A., Isgrò, F., Pollastro, A., Prevete, R.: Toward the application of XAI methods in eeg-based systems (2022)
Bahng, H., Chun, S., Yun, S., Choo, J., Oh, S.J.: Learning de-biased representations with biased representations. In: International Conference on Machine Learning, pp. 528–539. PMLR (2020)
Barbano, C.A., Dufumier, B., Tartaglione, E., Grangetto, M., Gori, P.: Unbiased supervised contrastive learning. In: The Eleventh International Conference on Learning Representations (2023). https://openreview.net/forum?id=Ph5cJSfD2XN
Bargavi, M., Senbagavalli, M., KR, T., KR, T.: Data breach–its effects on industry. Int. J. Data Inform. Intell. Comput. 1(2), 51–57 (2022)
Bidgoly, A.J., Bidgoly, H.J., Arezoumand, Z.: A survey on methods and challenges in EEG based authentication. Comput. Secur. 93, 101788 (2020)
Böröcz, I., Quinn, P.: Electroencephalography (or EEG)-based brain data: under the lenses of the general data protection regulation. Shimla Law Rev. 3, 1–23 (2020)
Boudiaf, M., et al.: A unifying mutual information view of metric learning: cross-entropy vs. pairwise losses. In: Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part VI, pp. 548–564. Springer (2020)
Bozhkov, L., Georgieva, P., Santos, I., Pereira, A., Silva, C.: EEG-based subject independent affective computing models. Procedia Comput. Sci. 53, 375–382 (2015)
Chen, L.l., Zhao, Y., Zhang, J., Zou, J.z.: Automatic detection of alertness/drowsiness from physiological signals using wavelet-based nonlinear features and machine learning. Expert Syst. Appl. 42(21), 7344–7355 (2015)
Chen, L., Chen, P., Lin, Z.: Artificial intelligence in education: a review. IEEE Access 8, 75264–75278 (2020)
Cohen, M.X.: Where does EEG come from and what does it mean? Trends Neurosci. 40(4), 208–218 (2017)
Cornock, M.: General data protection regulation (gdpr) and implications for research. Maturitas 111, A1–A2 (2018)
Correa, A.G., Orosco, L., Laciar, E.: Automatic detection of drowsiness in EEG records based on multimodal analysis. Med. Eng. Phys. 36(2), 244–249 (2014)
Das, R., Maiorana, E., Campisi, P.: Motor imagery for EEG biometrics using convolutional neural network. In: 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 2062–2066 (2018). https://doi.org/10.1109/ICASSP.2018.8461909
Enriquez-Geppert, S., Huster, R.J., Herrmann, C.S.: EEG-neurofeedback as a tool to modulate cognition and behavior: a review tutorial. Front. Hum. Neurosci. 11 (2017). https://doi.org/10.3389/fnhum.2017.00051, https://www.frontiersin.org/articles/10.3389/fnhum.2017.00051
European Parliament: EU AI Act: First regulation on Artificial Intelligence. Online (2023). https://www.europarl.europa.eu/news/en/headlines/society/20230601STO93804/eu-ai-act-first-regulation-on-artificial-intelligence
GDPR-Info: Eu general data protection regulation (gdpr) - article 4. Online (2016). https://gdpr-info.eu/art-4-gdpr/
GDPR-Info: Eu general data protection regulation (gdpr) - article 9. Online (2016). https://gdpr-info.eu/art-9-gdpr/
Guger, C., Allison, B.Z., Gunduz, A.: Brain-computer interface research: a state-of-the-art summary 10. Springer (2021)
Hupont, I., Micheli, M., Delipetrev, B., Gómez, E., Garrido, J.S.: Documenting high-risk AI: a European regulatory perspective. Computer 56(5), 18–27 (2023)
Islam, M.R., Ahmed, M.U., Barua, S., Begum, S.: A systematic review of explainable artificial intelligence in terms of different application domains and tasks. Appl. Sci. 12(3), 1353 (2022)
Jobin, A., Ienca, M., Vayena, E.: The global landscape of AI ethics guidelines. Nature Mach. Intell. 1(9), 389–399 (2019)
Ju, C., Gao, D., Mane, R., Tan, B., Liu, Y., Guan, C.: Federated transfer learning for EEG signal classification. In: 2020 42nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), pp. 3040–3045. IEEE (2020)
Khosla, A., Khandnor, P., Chand, T.: A comparative analysis of signal processing and classification methods for different applications based on EEG signals. Biocybern. Biomed. Eng. 40(2), 649–690 (2020)
Klem, G.H.: The ten-twenty electrode system of the international federation. The international federation of clinical neurophysiology. Electroencephalogr. Clin. Neurophysiol. Suppl. 52, 3–6 (1999)
Lenartowicz, A., Loo, S.K.: Use of EEG to diagnose ADHD. Curr. Psychiatry Rep. 16, 1–11 (2014)
Li, H., Yu, L., He, W.: The impact of GDPR on global technology development (2019)
Liboreiro, J.: MEPs endorse blanket ban on live facial recognition in public spaces — euronews.com. https://www.euronews.com/my-europe/2023/06/14/meps-endorse-blanket-ban-on-facial-recognition-in-public-spaces-rejecting-targeted-exempti. Accessed 14 Jun 2023
Liu, N.H., Chiang, C.Y., Chu, H.C.: Recognizing the degree of human attention using EEG signals from mobile sensors. Sensors 13(8), 10273–10286 (2013)
Luján, M.Á., Jimeno, M.V., Mateo Sotos, J., Ricarte, J.J., Borja, A.L.: A survey on EEG signal processing techniques and machine learning: applications to the neurofeedback of autobiographical memory deficits in schizophrenia. Electronics 10(23), 3037 (2021)
Mehrabi, N., Morstatter, F., Saxena, N., Lerman, K., Galstyan, A.: A survey on bias and fairness in machine learning. ACM Comput. Surv. (CSUR) 54(6), 1–35 (2021)
Mu, Z., Hu, J., Min, J.: Driver fatigue detection system using electroencephalography signals based on combined entropy features. Appl. Sci. 7(2), 150 (2017)
Müller, V.C.: Ethics of artificial intelligence and robotics. Stanford Encyclopedia of Philosophy (2020)
Nahon, R., Nguyen, V.T., Tartaglione, E.: Mining bias-target alignment from voronoi cells. arXiv preprint arXiv:2305.03691 (2023)
Nishimoto, T., Higashi, H., Morioka, H., Ishii, S.: Eeg-based personal identification method using unsupervised feature extraction and its robustness against intra-subject variability. J. Neural Eng. 17(2), 026007 (2020). https://doi.org/10.1088/1741-2552/ab6d89
Oseni, A., Moustafa, N., Janicke, H., Liu, P., Tari, Z., Vasilakos, A.: Security and privacy for artificial intelligence: Opportunities and challenges (2021)
Panigutti, C., et al.: The role of explainable ai in the context of the ai act. In: Proceedings of the 2023 ACM Conference on Fairness, Accountability, and Transparency, pp. 1139–1150 (2023)
Paranjape, R., Mahovsky, J., Benedicenti, L., Koles’, Z.: The electroencephalogram as a biometric. In: Canadian Conference on Electrical and Computer Engineering 2001. Conference Proceedings (Cat. No.01TH8555), vol. 2, pp. 1363–1366 vol.2 (2001). https://doi.org/10.1109/CCECE.2001.933649
Poulos, M., Rangoussi, M., Alexandris, N.: Neural network based person identification using eeg features. In: 1999 IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings. ICASSP99 (Cat. No. 99CH36258), vol. 2, pp. 1117–1120. IEEE (1999)
Revett, K., de Magalhães, S.T.: Cognitive biometrics: challenges for the future. In: Global Security, Safety, and Sustainability: 6th International Conference, ICGS3 2010, Braga, Portugal, September 1-3, 2010. Proceedings 6, pp. 79–86. Springer (2010)
Ryan, M.: In AI we trust: ethics, artificial intelligence, and reliability. Sci. Eng. Ethics 26(5), 2749–2767 (2020)
Schacter, D.L.: Eeg theta waves and psychological phenomena: a review and analysis. Biol. Psychol. 5(1), 47–82 (1977)
Schlackl, F., Link, N., Hoehle, H.: Antecedents and consequences of data breaches: a systematic review. Inf. Manage. 59(4), 103638 (2022). https://doi.org/10.1016/j.im.2022.103638
Secinaro, S., Calandra, D., Secinaro, A., Muthurangu, V., Biancone, P.: The role of artificial intelligence in healthcare: a structured literature review. BMC Med. Inform. Decis. Mak. 21, 1–23 (2021)
Slater, J., Joober, R., Koborsy, B.L., Mitchell, S., Sahlas, E., Palmer, C.: Can electroencephalography (EEG) identify ADHD subtypes? a systematic review. Neurosci. Biobehav. Rev., 104752 (2022)
Soufineyestani, M., Dowling, D., Khan, A.: Electroencephalography (EEG) technology applications and available devices. Appl. Sci. 10(21) (2020). https://doi.org/10.3390/app10217453, https://www.mdpi.com/2076-3417/10/21/7453
Sovrano, F., Sapienza, S., Palmirani, M., Vitali, F.: Metrics, explainability and the European AI act proposal. J 5(1), 126–138 (2022)
Stone, P., et al.: Artificial intelligence and life in 2030: the one hundred year study on artificial intelligence. arXiv preprint arXiv:2211.06318 (2022)
Tankard, C.: What the GDPR means for businesses. Netw. Secur. 2016(6), 5–8 (2016)
Tartaglione, E., Barbano, C.A., Grangetto, M.: End: entangling and disentangling deep representations for bias correction. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 13508–13517 (2021)
Tartaglione, E., Gennari, F., Grangetto, M.: Disentangling private classes through regularization. arXiv preprint arXiv:2207.02000 (2022)
Unknown: The Artificial Intelligence Act (September 7 2021), Archived from the original on 17 February 2022. Retrieved 17 February 2022
Vaid, S., Singh, P., Kaur, C.: EEG signal analysis for BCI interface: a review. In: 2015 Fifth International Conference on Advanced Computing & Communication Technologies, pp. 143–147. IEEE (2015)
Veale, M., Zuiderveen Borgesius, F.: Demystifying the draft EU artificial intelligence act–analysing the good, the bad, and the unclear elements of the proposed approach. Comput. Law Rev. Int. 22(4), 97–112 (2021)
Vitali, F.: A survey on methods and metrics for the assessment of explainability under the proposed AI act. In: Legal Knowledge and Information Systems: JURIX 2021: The Thirty-Fourth Annual Conference, Vilnius, Lithuania, 8-10 December 2021, vol. 346, p. 235. IOS Press (2022)
Wang, Y., Nahon, R., Tartaglione, E., Mozharovskyi, P., Nguyen, V.T.: Optimized preprocessing and tiny ml for attention state classification (2023)
Wexler, A., Thibault, R.: Mind-reading or misleading? assessing direct-to-consumer electroencephalography (EEG) devices marketed for wellness and their ethical and regulatory implications. J. Cognitive Enhancement 3, 131–137 (2019)
Xu, J., Hu, Z., Zou, Z., Zou, J., Hu, X., Liu, L., Zheng, L.: Design of smart unstaffed retail shop based on iot and artificial intelligence. IEEE Access 8, 147728–147737 (2020)
Yang, M., Li, H., Sun, X., Yang, L., Duan, H., Che, Y., Han, C.: Toward wearable EEG-based alertness detection system using svm with optimal minimum channels. In: MATEC Web of Conferences, vol. 214, p. 03009. EDP Sciences (2018)
Zaeem, R.N., Barber, K.S.: The effect of the GDPR on privacy policies: recent progress and future promise. ACM Trans. Manage. Inf. Syst. (TMIS) 12(1), 1–20 (2020)
Zhang, C., Lu, Y.: Study on artificial intelligence: the state of the art and future prospects. J. Ind. Inf. Integr. 23, 100224 (2021)
Zotev, V., Mayeli, A., Misaki, M., Bodurka, J.: Emotion self-regulation training in major depressive disorder using simultaneous real-time FMRI and EEG neurofeedback. NeuroImage: Clin. 27, 102331 (2020)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Nahon, R., Bagheri, N., Varni, G., Tartaglione, E., Nguyen, VT. (2025). Mental State Classification Using EEG Signals: Ethics, Law and Challenges. In: Meo, R., Silvestri, F. (eds) Machine Learning and Principles and Practice of Knowledge Discovery in Databases. ECML PKDD 2023. Communications in Computer and Information Science, vol 2133. Springer, Cham. https://doi.org/10.1007/978-3-031-74630-7_28
Download citation
DOI: https://doi.org/10.1007/978-3-031-74630-7_28
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-74629-1
Online ISBN: 978-3-031-74630-7
eBook Packages: Artificial Intelligence (R0)