[go: up one dir, main page]

Skip to main content

Mental State Classification Using EEG Signals: Ethics, Law and Challenges

  • Conference paper
  • First Online:
Machine Learning and Principles and Practice of Knowledge Discovery in Databases (ECML PKDD 2023)

Abstract

The widespread adoption of Artificial Intelligence (AI) in various domains has sparked concerns regarding privacy, security, transparency, fairness, reliability, and ethics. The General Data Protection Regulation (GDPR), implemented in 2018, has established crucial guidelines for data privacy and protection. Meanwhile, the AI Act, passed by the European Parliament in 2023, has been proposed to address the risks of specific uses of AI. However, the implications of these regulations for AI models, particularly in the context of mental state classification tasks, remain uncertain due to the inherent black-box nature of certain models. This paper delves into the specific challenges and risks associated with the development of EEG- (Electroencephalography) and AI-based systems for mental state classification, taking into account the principles outlined by the GDPR and the AI Act. This research sheds light on the challenges and responsibilities entailed in developing AI models for mental state classification while ensuring compliance with GDPR guidelines as well as the AI Act. It underscores the importance of adopting ethical and privacy-aware approaches within this critical domain and promotes the development of techniques that strike a balance between AI advancements and the protection of individual privacy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    EEG is used to refer to either “electroencephalogram” or “electroencephalography”, which is the method by which electroencephalograms are acquired.

  2. 2.

    The trained models are available at this link.

  3. 3.

    The AI Act was proposed in 2021, and passed by the European Parliament in June 2023 [19, 57].

  4. 4.

    Implementation of ResNet-18 provided by torchvision at this link.

  5. 5.

    GitHub repository of pytorch-memory-utils at this link.

  6. 6.

    GitHub repository of pytorch-estimate-flops at this link.

References

  1. Acı, Ç.İ, Kaya, M., Mishchenko, Y.: Distinguishing mental attention states of humans via an EEG-based passive BCI using machine learning methods. Expert Syst. Appl. 134, 153–166 (2019)

    Article  Google Scholar 

  2. Alarcao, S.M., Fonseca, M.J.: Emotions recognition using EEG signals: a survey. IEEE Trans. Affect. Comput. 10(3), 374–393 (2017)

    Article  MATH  Google Scholar 

  3. Almeida Teixeira, G., Mira da Silva, M., Pereira, R.: The critical success factors of GDPR implementation: a systematic literature review. Digital Policy, Regulation Governance 21(4), 402–418 (2019)

    Google Scholar 

  4. Apicella, A., Isgrò, F., Pollastro, A., Prevete, R.: Toward the application of XAI methods in eeg-based systems (2022)

    Google Scholar 

  5. Bahng, H., Chun, S., Yun, S., Choo, J., Oh, S.J.: Learning de-biased representations with biased representations. In: International Conference on Machine Learning, pp. 528–539. PMLR (2020)

    Google Scholar 

  6. Barbano, C.A., Dufumier, B., Tartaglione, E., Grangetto, M., Gori, P.: Unbiased supervised contrastive learning. In: The Eleventh International Conference on Learning Representations (2023). https://openreview.net/forum?id=Ph5cJSfD2XN

  7. Bargavi, M., Senbagavalli, M., KR, T., KR, T.: Data breach–its effects on industry. Int. J. Data Inform. Intell. Comput. 1(2), 51–57 (2022)

    Google Scholar 

  8. Bidgoly, A.J., Bidgoly, H.J., Arezoumand, Z.: A survey on methods and challenges in EEG based authentication. Comput. Secur. 93, 101788 (2020)

    Article  MATH  Google Scholar 

  9. Böröcz, I., Quinn, P.: Electroencephalography (or EEG)-based brain data: under the lenses of the general data protection regulation. Shimla Law Rev. 3, 1–23 (2020)

    MATH  Google Scholar 

  10. Boudiaf, M., et al.: A unifying mutual information view of metric learning: cross-entropy vs. pairwise losses. In: Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part VI, pp. 548–564. Springer (2020)

    Google Scholar 

  11. Bozhkov, L., Georgieva, P., Santos, I., Pereira, A., Silva, C.: EEG-based subject independent affective computing models. Procedia Comput. Sci. 53, 375–382 (2015)

    Article  MATH  Google Scholar 

  12. Chen, L.l., Zhao, Y., Zhang, J., Zou, J.z.: Automatic detection of alertness/drowsiness from physiological signals using wavelet-based nonlinear features and machine learning. Expert Syst. Appl. 42(21), 7344–7355 (2015)

    Google Scholar 

  13. Chen, L., Chen, P., Lin, Z.: Artificial intelligence in education: a review. IEEE Access 8, 75264–75278 (2020)

    Article  MATH  Google Scholar 

  14. Cohen, M.X.: Where does EEG come from and what does it mean? Trends Neurosci. 40(4), 208–218 (2017)

    Article  CAS  PubMed  MATH  Google Scholar 

  15. Cornock, M.: General data protection regulation (gdpr) and implications for research. Maturitas 111, A1–A2 (2018)

    Article  PubMed  MATH  Google Scholar 

  16. Correa, A.G., Orosco, L., Laciar, E.: Automatic detection of drowsiness in EEG records based on multimodal analysis. Med. Eng. Phys. 36(2), 244–249 (2014)

    Article  Google Scholar 

  17. Das, R., Maiorana, E., Campisi, P.: Motor imagery for EEG biometrics using convolutional neural network. In: 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 2062–2066 (2018). https://doi.org/10.1109/ICASSP.2018.8461909

  18. Enriquez-Geppert, S., Huster, R.J., Herrmann, C.S.: EEG-neurofeedback as a tool to modulate cognition and behavior: a review tutorial. Front. Hum. Neurosci. 11 (2017). https://doi.org/10.3389/fnhum.2017.00051, https://www.frontiersin.org/articles/10.3389/fnhum.2017.00051

  19. European Parliament: EU AI Act: First regulation on Artificial Intelligence. Online (2023). https://www.europarl.europa.eu/news/en/headlines/society/20230601STO93804/eu-ai-act-first-regulation-on-artificial-intelligence

  20. GDPR-Info: Eu general data protection regulation (gdpr) - article 4. Online (2016). https://gdpr-info.eu/art-4-gdpr/

  21. GDPR-Info: Eu general data protection regulation (gdpr) - article 9. Online (2016). https://gdpr-info.eu/art-9-gdpr/

  22. Guger, C., Allison, B.Z., Gunduz, A.: Brain-computer interface research: a state-of-the-art summary 10. Springer (2021)

    Google Scholar 

  23. Hupont, I., Micheli, M., Delipetrev, B., Gómez, E., Garrido, J.S.: Documenting high-risk AI: a European regulatory perspective. Computer 56(5), 18–27 (2023)

    Article  Google Scholar 

  24. Islam, M.R., Ahmed, M.U., Barua, S., Begum, S.: A systematic review of explainable artificial intelligence in terms of different application domains and tasks. Appl. Sci. 12(3), 1353 (2022)

    Article  CAS  MATH  Google Scholar 

  25. Jobin, A., Ienca, M., Vayena, E.: The global landscape of AI ethics guidelines. Nature Mach. Intell. 1(9), 389–399 (2019)

    Article  Google Scholar 

  26. Ju, C., Gao, D., Mane, R., Tan, B., Liu, Y., Guan, C.: Federated transfer learning for EEG signal classification. In: 2020 42nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), pp. 3040–3045. IEEE (2020)

    Google Scholar 

  27. Khosla, A., Khandnor, P., Chand, T.: A comparative analysis of signal processing and classification methods for different applications based on EEG signals. Biocybern. Biomed. Eng. 40(2), 649–690 (2020)

    Article  Google Scholar 

  28. Klem, G.H.: The ten-twenty electrode system of the international federation. The international federation of clinical neurophysiology. Electroencephalogr. Clin. Neurophysiol. Suppl. 52, 3–6 (1999)

    Google Scholar 

  29. Lenartowicz, A., Loo, S.K.: Use of EEG to diagnose ADHD. Curr. Psychiatry Rep. 16, 1–11 (2014)

    Article  MATH  Google Scholar 

  30. Li, H., Yu, L., He, W.: The impact of GDPR on global technology development (2019)

    Google Scholar 

  31. Liboreiro, J.: MEPs endorse blanket ban on live facial recognition in public spaces — euronews.com. https://www.euronews.com/my-europe/2023/06/14/meps-endorse-blanket-ban-on-facial-recognition-in-public-spaces-rejecting-targeted-exempti. Accessed 14 Jun 2023

  32. Liu, N.H., Chiang, C.Y., Chu, H.C.: Recognizing the degree of human attention using EEG signals from mobile sensors. Sensors 13(8), 10273–10286 (2013)

    Google Scholar 

  33. Luján, M.Á., Jimeno, M.V., Mateo Sotos, J., Ricarte, J.J., Borja, A.L.: A survey on EEG signal processing techniques and machine learning: applications to the neurofeedback of autobiographical memory deficits in schizophrenia. Electronics 10(23), 3037 (2021)

    Article  Google Scholar 

  34. Mehrabi, N., Morstatter, F., Saxena, N., Lerman, K., Galstyan, A.: A survey on bias and fairness in machine learning. ACM Comput. Surv. (CSUR) 54(6), 1–35 (2021)

    Article  MATH  Google Scholar 

  35. Mu, Z., Hu, J., Min, J.: Driver fatigue detection system using electroencephalography signals based on combined entropy features. Appl. Sci. 7(2), 150 (2017)

    Article  MATH  Google Scholar 

  36. Müller, V.C.: Ethics of artificial intelligence and robotics. Stanford Encyclopedia of Philosophy (2020)

    Google Scholar 

  37. Nahon, R., Nguyen, V.T., Tartaglione, E.: Mining bias-target alignment from voronoi cells. arXiv preprint arXiv:2305.03691 (2023)

  38. Nishimoto, T., Higashi, H., Morioka, H., Ishii, S.: Eeg-based personal identification method using unsupervised feature extraction and its robustness against intra-subject variability. J. Neural Eng. 17(2), 026007 (2020). https://doi.org/10.1088/1741-2552/ab6d89

  39. Oseni, A., Moustafa, N., Janicke, H., Liu, P., Tari, Z., Vasilakos, A.: Security and privacy for artificial intelligence: Opportunities and challenges (2021)

    Google Scholar 

  40. Panigutti, C., et al.: The role of explainable ai in the context of the ai act. In: Proceedings of the 2023 ACM Conference on Fairness, Accountability, and Transparency, pp. 1139–1150 (2023)

    Google Scholar 

  41. Paranjape, R., Mahovsky, J., Benedicenti, L., Koles’, Z.: The electroencephalogram as a biometric. In: Canadian Conference on Electrical and Computer Engineering 2001. Conference Proceedings (Cat. No.01TH8555), vol. 2, pp. 1363–1366 vol.2 (2001). https://doi.org/10.1109/CCECE.2001.933649

  42. Poulos, M., Rangoussi, M., Alexandris, N.: Neural network based person identification using eeg features. In: 1999 IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings. ICASSP99 (Cat. No. 99CH36258), vol. 2, pp. 1117–1120. IEEE (1999)

    Google Scholar 

  43. Revett, K., de Magalhães, S.T.: Cognitive biometrics: challenges for the future. In: Global Security, Safety, and Sustainability: 6th International Conference, ICGS3 2010, Braga, Portugal, September 1-3, 2010. Proceedings 6, pp. 79–86. Springer (2010)

    Google Scholar 

  44. Ryan, M.: In AI we trust: ethics, artificial intelligence, and reliability. Sci. Eng. Ethics 26(5), 2749–2767 (2020)

    Article  PubMed  PubMed Central  MATH  Google Scholar 

  45. Schacter, D.L.: Eeg theta waves and psychological phenomena: a review and analysis. Biol. Psychol. 5(1), 47–82 (1977)

    Article  CAS  PubMed  Google Scholar 

  46. Schlackl, F., Link, N., Hoehle, H.: Antecedents and consequences of data breaches: a systematic review. Inf. Manage. 59(4), 103638 (2022). https://doi.org/10.1016/j.im.2022.103638

    Article  MATH  Google Scholar 

  47. Secinaro, S., Calandra, D., Secinaro, A., Muthurangu, V., Biancone, P.: The role of artificial intelligence in healthcare: a structured literature review. BMC Med. Inform. Decis. Mak. 21, 1–23 (2021)

    Article  Google Scholar 

  48. Slater, J., Joober, R., Koborsy, B.L., Mitchell, S., Sahlas, E., Palmer, C.: Can electroencephalography (EEG) identify ADHD subtypes? a systematic review. Neurosci. Biobehav. Rev., 104752 (2022)

    Google Scholar 

  49. Soufineyestani, M., Dowling, D., Khan, A.: Electroencephalography (EEG) technology applications and available devices. Appl. Sci. 10(21) (2020). https://doi.org/10.3390/app10217453, https://www.mdpi.com/2076-3417/10/21/7453

  50. Sovrano, F., Sapienza, S., Palmirani, M., Vitali, F.: Metrics, explainability and the European AI act proposal. J 5(1), 126–138 (2022)

    Google Scholar 

  51. Stone, P., et al.: Artificial intelligence and life in 2030: the one hundred year study on artificial intelligence. arXiv preprint arXiv:2211.06318 (2022)

  52. Tankard, C.: What the GDPR means for businesses. Netw. Secur. 2016(6), 5–8 (2016)

    Article  MATH  Google Scholar 

  53. Tartaglione, E., Barbano, C.A., Grangetto, M.: End: entangling and disentangling deep representations for bias correction. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 13508–13517 (2021)

    Google Scholar 

  54. Tartaglione, E., Gennari, F., Grangetto, M.: Disentangling private classes through regularization. arXiv preprint arXiv:2207.02000 (2022)

  55. Unknown: The Artificial Intelligence Act (September 7 2021), Archived from the original on 17 February 2022. Retrieved 17 February 2022

    Google Scholar 

  56. Vaid, S., Singh, P., Kaur, C.: EEG signal analysis for BCI interface: a review. In: 2015 Fifth International Conference on Advanced Computing & Communication Technologies, pp. 143–147. IEEE (2015)

    Google Scholar 

  57. Veale, M., Zuiderveen Borgesius, F.: Demystifying the draft EU artificial intelligence act–analysing the good, the bad, and the unclear elements of the proposed approach. Comput. Law Rev. Int. 22(4), 97–112 (2021)

    Article  MATH  Google Scholar 

  58. Vitali, F.: A survey on methods and metrics for the assessment of explainability under the proposed AI act. In: Legal Knowledge and Information Systems: JURIX 2021: The Thirty-Fourth Annual Conference, Vilnius, Lithuania, 8-10 December 2021, vol. 346, p. 235. IOS Press (2022)

    Google Scholar 

  59. Wang, Y., Nahon, R., Tartaglione, E., Mozharovskyi, P., Nguyen, V.T.: Optimized preprocessing and tiny ml for attention state classification (2023)

    Google Scholar 

  60. Wexler, A., Thibault, R.: Mind-reading or misleading? assessing direct-to-consumer electroencephalography (EEG) devices marketed for wellness and their ethical and regulatory implications. J. Cognitive Enhancement 3, 131–137 (2019)

    Article  Google Scholar 

  61. Xu, J., Hu, Z., Zou, Z., Zou, J., Hu, X., Liu, L., Zheng, L.: Design of smart unstaffed retail shop based on iot and artificial intelligence. IEEE Access 8, 147728–147737 (2020)

    Article  MATH  Google Scholar 

  62. Yang, M., Li, H., Sun, X., Yang, L., Duan, H., Che, Y., Han, C.: Toward wearable EEG-based alertness detection system using svm with optimal minimum channels. In: MATEC Web of Conferences, vol. 214, p. 03009. EDP Sciences (2018)

    Google Scholar 

  63. Zaeem, R.N., Barber, K.S.: The effect of the GDPR on privacy policies: recent progress and future promise. ACM Trans. Manage. Inf. Syst. (TMIS) 12(1), 1–20 (2020)

    MATH  Google Scholar 

  64. Zhang, C., Lu, Y.: Study on artificial intelligence: the state of the art and future prospects. J. Ind. Inf. Integr. 23, 100224 (2021)

    Google Scholar 

  65. Zotev, V., Mayeli, A., Misaki, M., Bodurka, J.: Emotion self-regulation training in major depressive disorder using simultaneous real-time FMRI and EEG neurofeedback. NeuroImage: Clin. 27, 102331 (2020)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rémi Nahon .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Nahon, R., Bagheri, N., Varni, G., Tartaglione, E., Nguyen, VT. (2025). Mental State Classification Using EEG Signals: Ethics, Law and Challenges. In: Meo, R., Silvestri, F. (eds) Machine Learning and Principles and Practice of Knowledge Discovery in Databases. ECML PKDD 2023. Communications in Computer and Information Science, vol 2133. Springer, Cham. https://doi.org/10.1007/978-3-031-74630-7_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-74630-7_28

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-74629-1

  • Online ISBN: 978-3-031-74630-7

  • eBook Packages: Artificial Intelligence (R0)

Publish with us

Policies and ethics