Abstract
Applause is an ancient, widespread collective behaviour by which an audience expresses appreciation at the conclusion of a collective event such as an artistic performance or a public ceremony. In some cultures, it is possible to observe a spontaneous transition from an initially incoherent to a surprisingly synchronised form of applause. Such kind of emergent behaviour has long since fascinated researchers from different disciplines. This paper shows a possible application of formal methods to study similar phenomena. The key idea is to model the audience as a concurrent system, where each person is a separate process that follows the same, simple behaviour. The model can then be automatically analysed to study the possible evolutions of the system as a whole, and in particular to assess the likelihood of emerging synchronisation.
This work is dedicated to Rocco De Nicola on the occasion of his 70th birthday. Luca is very thankful for having been supervised by Rocco during his doctoral studies and for the enduring collaboration. Omar would like to express his gratitude to Rocco for the opportunities of joint work (including Luca’s supervision) and the precious advice. Rocco’s work and vision are a continuing source of inspiration for both authors.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
Throughout the paper, \(\div \) denotes integer division with rounding.
- 2.
- 3.
References
Abd Alrahman, Y., Azzopardi, S., Di Stefano, L., Piterman, N.: Language support for verifying reconfigurable interacting systems. Int. J. Softw. Tools Technol. Transfer 25(5), 765–784 (2023). https://doi.org/10/gs4rg6
Abd Alrahman, Y., De Nicola, R., Loreti, M.: Programming interactions in collective adaptive systems by relying on attribute-based communication. Sci. Comput. Program. 192, 102428 (2020). https://doi.org/10.1016/j.scico.2020.102428
Abd Alrahman, Y., De Nicola, R., Loreti, M., Tiezzi, F., Vigo, R.: A calculus for attribute-based communication. In: SAC. ACM (2015). https://doi.org/gf4vn6
Bartocci, E., Liò, P.: Computational modeling, formal analysis, and tools for systems biology. PLoS Comput. Biol. 12, e1004591 (2016). https://doi.org/10/f8knqc
Bergstra, J.A., Klop, J.W., Tucker, J.V.: Algebraic tools for system construction. In: Clarke, E., Kozen, D. (eds.) Workshop on Logics of Programs. LNCS, vol. 164. Springer, Cham (1983). https://doi.org/10.1007/3-540-12896-4_353
Boemo, M.A., Cardelli, L., Nieduszynski, C.A.: The Beacon Calculus: a formal method for the flexible and concise modelling of biological systems. PLOS Comput. Biol. 16, e1007651 (2020). https://doi.org/10.1371/journal.pcbi.1007651
Cavada, R., et al.: The NUXMV symbolic model checker. In: Biere, A., Bloem, R. (eds.) CAV. LNCS, vol. 8559, pp. 334–342. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-08867-9_22
Chopard, B., Droz, M.: Cellular Automata Modeling of Physical Systems. Cambridge University Press, Cambridge (1998). https://doi.org/10.1017/CBO9780511549755
Clarke, E., Kroening, D., Lerda, F.: A tool for checking ANSI-C programs. In: Jensen, K., Podelski, A. (eds.) TACAS. LNCS, vol. 2988, pp. 168–176. Springer, Cham (2004). https://doi.org/10/cfm9ks
Crawley, A.: Clap, clap, clap - unsystematic review essay on clapping and applause. Integr. Psychol. Behav. Sci. 57, 1354–1382 (2023). https://doi.org/10/gt5mb5
De Nicola, R.: A gentle introduction to Process Algebras. IMT School for Advanced Studies, Lucca, Italy (2011). https://doi.org/10.5281/zenodo.11065174
De Nicola, R., Di Stefano, L., Inverso, O.: Multi-agent systems with virtual stigmergy. Sci. Comput. Program. 187, 102345 (2020). https://doi.org/10/h3kv
De Nicola, R., Di Stefano, L., Inverso, O., Valiani, S.: Intuitive modelling and formal analysis of collective behaviour in foraging ants. In: Pang, J., Niehren, J. (eds.) CMSB. LNCS, vol. 14137, pp. 44–61. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-42697-1_4
De Nicola, R., Di Stefano, L., Inverso, O., Valiani, S.: Modelling flocks of birds and colonies of ants from the bottom up. Int. J. Softw. Tools Technol. Transf. 25, 675–691 (2023). https://doi.org/10.1007/s10009-023-00731-0
De Nicola, R., Duong, T., Inverso, O., Trubiani, C.: AErlang: empowering Erlang with attribute-based communication. Sci. Comput. Program. 168, 71–93 (2018). https://doi.org/10.1016/j.scico.2018.08.006
De Nicola, R., Duong, T., Loreti, M.: ABEL - a domain specific framework for programming with attribute-based communication. In: Riis Nielson, H., Tuosto, E. (eds.) COORDINATION. LNCS, vol. 11533, pp. 111–128. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-22397-7_7
De Nicola, R., Ferrari, G.L., Pugliese, R.: KLAIM: a kernel language for agents interaction and mobility. IEEE Trans. Softw. Eng. 24, 315–330 (1998). https://doi.org/10.1109/32.685256
De Nicola, R., Loreti, M., Pugliese, R., Tiezzi, F.: A formal approach to autonomic systems programming: the SCEL language. ACM Trans. Auton. Adapt. Syst. 9, 1–29 (2014). https://doi.org/10.1145/2619998
Di Stefano, L., De Nicola, R., Inverso, O.: Verification of distributed systems via sequential emulation. ACM Trans. Softw. Eng. Methodol. 31, 1–41 (2022). https://doi.org/10.1145/3490387
Di Stefano, L., Lang, F.: Verifying temporal properties of stigmergic collective systems using CADP. In: Margaria, T., Steffen, B. (eds.) ISoLA. LNCS, vol. 13036, pp. 473–489. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-89159-6_29
Di Stefano, L., Lang, F.: Compositional verification of stigmergic collective systems. In: Dragoi, C., Emmi, M., Wang, J. (eds.) VMCAI. LNCS, vol. 13881, pp. 155–176. Springer, Cham (2023). https://doi.org/10/jxwd, https://doi.org/10.1007/978-3-031-24950-1_8
Fleury, M., Biere, A.: Mining definitions in Kissat with Kittens. Form. Methods Syst. Des. 60, 381–404 (2022). https://doi.org/10.1007/s10703-023-00421-2
Hoare, C.A.R.: Communicating Sequential Processes. Prentice-Hall, Upper Saddle River (1985). http://www.usingcsp.com/cspbook.pdf
Horni, A., Montini, L.: A glimpse at emergence in agent-based simulations. In: STRC. ETH Zürich (2013). https://doi.org/10/m94g
Kauffman, S.: Homeostasis and differentiation in random genetic control networks. Nature 224(5215), 177–178 (1969). https://doi.org/10.1038/224177a0
Kermack, W.O., McKendrick, A.G.: Contributions to the mathematical theory of epidemics–I. Bull. Math. Biol. 53, 33–55 (1991). https://doi.org/10.1007/BF02464423, reprinted from Proc. R. Soc. A 115 (1927)
Kuramoto, Y., Nishikawa, I.: Statistical macrodynamics of large dynamical systems. Case of a phase transition in oscillator communities. J. Stat. Phys. 49, 569–605 (1987). https://doi.org/10.1007/BF01009349
Li, D., Liu, K., Sun, Y., Han, M.: Emerging clapping synchronization from a complex multiagent network with local information via local control. IEEE Trans. Circ. Syst. II Express Briefs 56-II, 504–508 (2009). https://doi.org/10.1109/TCSII.2009.2020931
Mann, R.P., Faria, J., Sumpter, D.J.T., Krause, J.: The dynamics of audience applause. J. R. Soc. Interface 10, 20130466 (2013). https://doi.org/10/f2zmr6
Milner, R.: A Calculus of Communicating Systems. LNCS, vol. 92. Springer, Cham (1980). https://doi.org/10.1007/3-540-10235-3
Milner, R.: Elements of interaction - turing award lecture. Commun. ACM 36, 78–89 (1993). https://doi.org/10.1145/151233.151240
Milner, R., Parrow, J., Walker, D.: A calculus of mobile processes, I. Inf. Comput. 100, 1–40 (1992). https://doi.org/10.1016/0890-5401(92)90008-4
Néda, Z., Ravasz, E., Brechet, Y., Vicsek, T., Barabási, A.L.: The sound of many hands clapping. Nature 403, 849–850 (2000). https://doi.org/10.1038/35002660
Néda, Z., Ravasz, E., Vicsek, T., Brechet, Y., Barabási, A.L.: Physics of the rhythmic applause. Phys. Rev. E 61, 6987–6992 (2000). https://doi.org/10.1103/PhysRevE.61.6987
Pnueli, A.: The temporal logic of programs. In: 18th Symposium on Foundations of Computer Science (FOCS), pp. 46–57. IEEE (1977). https://doi.org/10/dn8cpn
Sumpter, D.J., Blanchard, G.B., Broomhead, D.S.: Ants and agents: a process algebra approach to modelling ant colony behaviour. Bull. Math. Biol. 63, 951–980 (2001). https://doi.org/10.1006/bulm.2001.0252
Thomson, M., Murphy, K., Lukeman, R.: Groups clapping in unison undergo size-dependent error-induced frequency increase. Sci. Rep. 8, 808 (2018). https://doi.org/10.1038/s41598-017-18539-9
Tofts, C.M.N.: Describing social insect behaviour using process algebra. Trans. Soc. Comput. Simul. 9, 227 (1992)
Winfree, A.T.: Biological rhythms and the behavior of populations of coupled oscillators. J. Theoret. Biol. 16, 15–42 (1967). https://doi.org/10/bhr4xf
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Di Stefano, L., Inverso, O. (2025). Emerging Synchrony in Applauding Audiences: Formal Analysis and Specification. In: Margaria, T., Steffen, B. (eds) Leveraging Applications of Formal Methods, Verification and Validation. REoCAS Colloquium in Honor of Rocco De Nicola. ISoLA 2024. Lecture Notes in Computer Science, vol 15219. Springer, Cham. https://doi.org/10.1007/978-3-031-73709-1_16
Download citation
DOI: https://doi.org/10.1007/978-3-031-73709-1_16
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-73708-4
Online ISBN: 978-3-031-73709-1
eBook Packages: Computer ScienceComputer Science (R0)