[go: up one dir, main page]

Skip to main content

OneVOS: Unifying Video Object Segmentation with All-in-One Transformer Framework

  • Conference paper
  • First Online:
Computer Vision – ECCV 2024 (ECCV 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 15116))

Included in the following conference series:

  • 333 Accesses

Abstract

Contemporary Video Object Segmentation (VOS) approaches typically consist stages of feature extraction, matching, memory management, and multiple objects aggregation. Recent advanced models either employ a discrete modeling for these components in a sequential manner, or optimize a combined pipeline through substructure aggregation. However, these existing explicit staged approaches prevent the VOS framework from being optimized as a unified whole, leading to the limited capacity and suboptimal performance in tackling complex videos. In this paper, we propose OneVOS, a novel framework that unifies the core components of VOS with All-in-One Transformer. Specifically, to unify all aforementioned modules into a vision transformer, we model all the features of frames, masks and memory for multiple objects as transformer tokens, and integrally accomplish feature extraction, matching and memory management of multiple objects through the flexible attention mechanism. Furthermore, a Unidirectional Hybrid Attention is proposed through a double decoupling of the original attention operation, to rectify semantic errors and ambiguities of stored tokens in OneVOS framework. Finally, to alleviate the storage burden and expedite inference, we propose the Dynamic Token Selector, which unveils the working mechanism of OneVOS and naturally leads to a more efficient version of OneVOS. Extensive experiments demonstrate the superiority of OneVOS, achieving state-of-the-art performance across 7 datasets, particularly excelling in complex LVOS and MOSE datasets with 70.1% and 66.4% \( J \& F\) scores, surpassing previous state-of-the-art methods by 4.2% and 7.0%, respectively. Code is available at: https://github.com/L599wy/OneVOS.

W. Li and Pinxue Guo—Equal contribution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bhat, G., et al.: Learning what to learn for video object segmentation. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020, Part II. LNCS, vol. 12347, pp. 777–794. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58536-5_46

    Chapter  Google Scholar 

  2. Caelles, S., Maninis, K.K., Pont-Tuset, J., Leal-Taixé, L., Cremers, D., Van Gool, L.: One-shot video object segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 221–230 (2017)

    Google Scholar 

  3. Chen, B., et al.: Backbone is all your need: a simplified architecture for visual object tracking. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds.) ECCV 2022. LNCS, vol. 13682, pp. 375–392. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-20047-2_22

    Chapter  Google Scholar 

  4. Chen, X., Li, Z., Yuan, Y., Yu, G., Shen, J., Qi, D.: State-aware tracker for real-time video object segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9384–9393 (2020)

    Google Scholar 

  5. Chen, X., Yan, B., Zhu, J., Wang, D., Yang, X., Lu, H.: Transformer tracking. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8126–8135 (2021)

    Google Scholar 

  6. Chen, Y., Pont-Tuset, J., Montes, A., Van Gool, L.: Blazingly fast video object segmentation with pixel-wise metric learning. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1189–1198 (2018)

    Google Scholar 

  7. Cheng, H.K., Schwing, A.G.: XMem: long-term video object segmentation with an Atkinson-Shiffrin memory model. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds.) ECCV 2022. LNCS, vol. 13688, pp. 640–658. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-19815-1_37

    Chapter  Google Scholar 

  8. Cheng, H.K., Tai, Y.W., Tang, C.K.: Modular interactive video object segmentation: interaction-to-mask, propagation and difference-aware fusion. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5559–5568 (2021)

    Google Scholar 

  9. Cheng, H.K., Tai, Y.W., Tang, C.K.: Rethinking space-time networks with improved memory coverage for efficient video object segmentation. Adv. Neural. Inf. Process. Syst. 34, 11781–11794 (2021)

    Google Scholar 

  10. Cheng, J., Tsai, Y.H., Hung, W.C., Wang, S., Yang, M.H.: Fast and accurate online video object segmentation via tracking parts. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7415–7424 (2018)

    Google Scholar 

  11. Cheng, M.M., Mitra, N.J., Huang, X., Torr, P.H., Hu, S.M.: Global contrast based salient region detection. IEEE Trans. Pattern Anal. Mach. Intell. 37(3), 569–582 (2014)

    Article  Google Scholar 

  12. Cui, Y., Jiang, C., Wang, L., Wu, G.: MixFormer: end-to-end tracking with iterative mixed attention. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 13608–13618 (2022)

    Google Scholar 

  13. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: ImageNet: a large-scale hierarchical image database. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 248–255. IEEE (2009)

    Google Scholar 

  14. Ding, H., Liu, C., He, S., Jiang, X., Torr, P.H., Bai, S.: MOSE: a new dataset for video object segmentation in complex scenes. arXiv preprint arXiv:2302.01872 (2023)

  15. Dosovitskiy, A., et al.: An image is worth 16\(\times \)16 words: transformers for image recognition at scale. arXiv preprint arXiv:2010.11929 (2020)

  16. Duke, B., Ahmed, A., Wolf, C., Aarabi, P., Taylor, G.W.: SSTVOS: sparse spatiotemporal transformers for video object segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5912–5921 (2021)

    Google Scholar 

  17. Everingham, M., Van Gool, L., Williams, C.K., Winn, J., Zisserman, A.: The pascal visual object classes (VOC) challenge. Int. J. Comput. Vision 88, 303–338 (2010)

    Article  Google Scholar 

  18. Fang, R., et al.: InstructSeq: unifying vision tasks with instruction-conditioned multi-modal sequence generation. arXiv preprint arXiv:2311.18835 (2023)

  19. Gao, J., et al.: Coarse-to-fine amodal segmentation with shape prior. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 1262–1271 (2023)

    Google Scholar 

  20. Gao, P., Ma, T., Li, H., Lin, Z., Dai, J., Qiao, Y.: ConvMAE: masked convolution meets masked autoencoders. arXiv preprint arXiv:2205.03892 (2022)

  21. Gao, S., Zhou, C., Ma, C., Wang, X., Yuan, J.: AiATrack: attention in attention for transformer visual tracking. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds.) ECCV 2022. LNCS, vol. 13682, pp. 146–164. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-20047-2_9

    Chapter  Google Scholar 

  22. Guo, P., et al.: ClickVOS: click video object segmentation. arXiv preprint arXiv:2403.06130 (2024)

  23. Guo, P., Zhang, W., Li, X., Zhang, W.: Adaptive online mutual learning bi-decoders for video object segmentation. IEEE Trans. Image Process. 31, 7063–7077 (2022)

    Article  Google Scholar 

  24. Hariharan, B., Arbeláez, P., Bourdev, L., Maji, S., Malik, J.: Semantic contours from inverse detectors. In: 2011 International Conference on Computer Vision, pp. 991–998. IEEE (2011)

    Google Scholar 

  25. He, K., Chen, X., Xie, S., Li, Y., Dollár, P., Girshick, R.: Masked autoencoders are scalable vision learners. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 16000–16009 (2022)

    Google Scholar 

  26. Hong, L., et al.: LVOS: a benchmark for long-term video object segmentation. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 13480–13492 (2023)

    Google Scholar 

  27. Hong, L., et al.: OneTracker: unifying visual object tracking with foundation models and efficient tuning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 19079–19091 (2024)

    Google Scholar 

  28. Hong, L., Zhang, W., Chen, L., Zhang, W., Fan, J.: Adaptive selection of reference frames for video object segmentation. IEEE Trans. Image Process. 31, 1057–1071 (2021)

    Article  Google Scholar 

  29. Hu, P., Wang, G., Kong, X., Kuen, J., Tan, Y.P.: Motion-guided cascaded refinement network for video object segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1400–1409 (2018)

    Google Scholar 

  30. Hu, Y.T., Huang, J.B., Schwing, A.G.: VideoMatch: Matching based video object segmentation. In: Proceedings of the European conference on computer vision (ECCV), pp. 54–70 (2018)

    Google Scholar 

  31. Huang, X., Xu, J., Tai, Y.W., Tang, C.K.: Fast video object segmentation with temporal aggregation network and dynamic template matching. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8879–8889 (2020)

    Google Scholar 

  32. Jang, E., Gu, S., Poole, B.: Categorical reparameterization with gumbel-softmax. arXiv preprint arXiv:1611.01144 (2016)

  33. Johnander, J., Danelljan, M., Brissman, E., Khan, F.S., Felsberg, M.: A generative appearance model for end-to-end video object segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8953–8962 (2019)

    Google Scholar 

  34. Khoreva, A., Benenson, R., Ilg, E., Brox, T., Schiele, B.: Lucid data dreaming for video object segmentation. Int. J. Comput. Vision 127(9), 1175–1197 (2019)

    Article  Google Scholar 

  35. Kristan, M., et al.: The sixth visual object tracking vot2018 challenge results. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018)

    Google Scholar 

  36. Li, M., Hu, L., Xiong, Z., Zhang, B., Pan, P., Liu, D.: Recurrent dynamic embedding for video object segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1332–1341 (2022)

    Google Scholar 

  37. Li, W., Fan, J., Guo, P., Hong, L., Zhang, W.: HFVOS: history-future integrated dynamic memory for video object segmentation. IEEE Trans. Circuits Syst. Video Technol. (2024)

    Google Scholar 

  38. Li, X., Loy, C.C.: Video object segmentation with joint re-identification and attention-aware mask propagation. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 90–105 (2018)

    Google Scholar 

  39. Lin, T.-Y., et al.: Microsoft COCO: common objects in context. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014, Part V. LNCS, vol. 8693, pp. 740–755. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_48

    Chapter  Google Scholar 

  40. Lin, Z., et al.: SWEM: towards real-time video object segmentation with sequential weighted expectation-maximization. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1362–1372 (2022)

    Google Scholar 

  41. Liu, Z., et al.: Swin transformer: hierarchical vision transformer using shifted windows. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10012–10022 (2021)

    Google Scholar 

  42. Maninis, K.K., et al.: Video object segmentation without temporal information. IEEE Trans. Pattern Anal. Mach. Intell. 41(6), 1515–1530 (2018)

    Article  Google Scholar 

  43. Nowozin, S.: Optimal decisions from probabilistic models: the intersection-over-union case. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 548–555 (2014)

    Google Scholar 

  44. Oh, S.W., Lee, J.Y., Sunkavalli, K., Kim, S.J.: Fast video object segmentation by reference-guided mask propagation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7376–7385 (2018)

    Google Scholar 

  45. Oh, S.W., Lee, J.Y., Xu, N., Kim, S.J.: Video object segmentation using space-time memory networks. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 9226–9235 (2019)

    Google Scholar 

  46. Perazzi, F., Khoreva, A., Benenson, R., Schiele, B., Sorkine-Hornung, A.: Learning video object segmentation from static images. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2663–2672 (2017)

    Google Scholar 

  47. Perazzi, F., Pont-Tuset, J., McWilliams, B., Van Gool, L., Gross, M., Sorkine-Hornung, A.: A benchmark dataset and evaluation methodology for video object segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 724–732 (2016)

    Google Scholar 

  48. Pont-Tuset, J., Perazzi, F., Caelles, S., Arbeláez, P., Sorkine-Hornung, A., Van Gool, L.: The 2017 DAVIS challenge on video object segmentation. arXiv preprint arXiv:1704.00675 (2017)

  49. Rao, Y., Zhao, W., Liu, B., Lu, J., Zhou, J., Hsieh, C.J.: DynamicViT: efficient vision transformers with dynamic token sparsification. Adv. Neural. Inf. Process. Syst. 34, 13937–13949 (2021)

    Google Scholar 

  50. Seong, H., Hyun, J., Kim, E.: Kernelized memory network for video object segmentation. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12367, pp. 629–645. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58542-6_38

    Chapter  Google Scholar 

  51. Seong, H., Oh, S.W., Lee, J.Y., Lee, S., Lee, S., Kim, E.: Hierarchical memory matching network for video object segmentation. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 12889–12898 (2021)

    Google Scholar 

  52. Shi, J., Yan, Q., Xu, L., Jia, J.: Hierarchical image saliency detection on extended CSSD. IEEE Trans. Pattern Anal. Mach. Intell. 38(4), 717–729 (2015)

    Article  Google Scholar 

  53. Voigtlaender, P., Chai, Y., Schroff, F., Adam, H., Leibe, B., Chen, L.C.: FEELVOS: fast end-to-end embedding learning for video object segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9481–9490 (2019)

    Google Scholar 

  54. Voigtlaender, P., Leibe, B.: Online adaptation of convolutional neural networks for video object segmentation. arXiv preprint arXiv:1706.09364 (2017)

  55. Wang, H., Jiang, X., Ren, H., Hu, Y., Bai, S.: SwiftNet: real-time video object segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1296–1305 (2021)

    Google Scholar 

  56. Wang, J., et al.: Look before you match: Instance understanding matters in video object segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2268–2278 (2023)

    Google Scholar 

  57. Wang, W., Shen, J., Porikli, F., Yang, R.: Semi-supervised video object segmentation with super-trajectories. IEEE Trans. Pattern Anal. Mach. Intell. 41(4), 985–998 (2018)

    Article  Google Scholar 

  58. Wu, Q., Yang, T., Liu, Z., Wu, B., Shan, Y., Chan, A.B.: DropMAE: masked autoencoders with spatial-attention dropout for tracking tasks. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 14561–14571 (2023)

    Google Scholar 

  59. Wu, Q., Yang, T., Wu, W., Chan, A.B.: Scalable video object segmentation with simplified framework. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 13879–13889 (2023)

    Google Scholar 

  60. Xiao, H., Feng, J., Lin, G., Liu, Y., Zhang, M.: MoNet: deep motion exploitation for video object segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1140–1148 (2018)

    Google Scholar 

  61. Xu, N., et al.: YouTube-VOS: a large-scale video object segmentation benchmark. arXiv preprint arXiv:1809.03327 (2018)

  62. Xu, S., Liu, D., Bao, L., Liu, W., Zhou, P.: MHP-VOS: multiple hypotheses propagation for video object segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 314–323 (2019)

    Google Scholar 

  63. Yan, S., Xu, X., Hong, L., Chen, W., Zhang, W., Zhang, W.: PanoVOS: bridging non-panoramic and panoramic views with transformer for video segmentation. arXiv preprint arXiv:2309.12303 (2023)

  64. Yan, S., et al.: Referred by multi-modality: a unified temporal transformer for video object segmentation. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 38, pp. 6449–6457 (2024)

    Google Scholar 

  65. Yang, Z., Wei, Y., Yang, Y.: Collaborative video object segmentation by foreground-background integration. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12350, pp. 332–348. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58558-7_20

    Chapter  Google Scholar 

  66. Yang, Z., Wei, Y., Yang, Y.: Associating objects with transformers for video object segmentation. In: Advances in Neural Information Processing Systems (NeurIPS) (2021)

    Google Scholar 

  67. Yang, Z., Wei, Y., Yang, Y.: Collaborative video object segmentation by multi-scale foreground-background integration. IEEE Trans. Pattern Anal. Mach. Intell. 44(9), 4701–4712 (2021)

    Google Scholar 

  68. Yang, Z., Yang, Y.: Decoupling features in hierarchical propagation for video object segmentation. In: Advances in Neural Information Processing Systems (NeurIPS) (2022)

    Google Scholar 

  69. Ye, B., Chang, H., Ma, B., Shan, S., Chen, X.: Joint feature learning and relation modeling for tracking: a one-stream framework. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds.) ECCV 2022. LNCS, vol. 13682, pp. 341–357. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-20047-2_20

    Chapter  Google Scholar 

  70. Zhou, X., et al.: Reading relevant feature from global representation memory for visual object tracking. In: Advances in Neural Information Processing Systems, vol. 36 (2024)

    Google Scholar 

Download references

Acknowledgements

This work was supported in part by National Natural Science Foundation of China (No. 62072112), and Scientific and Technological Innovation Action Plan of Shanghai Science and Technology Committee (No. 22511101502, No. 22511102202 and No. 21DZ2203300).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wei Zhang or Wenqiang Zhang .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 819 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Li, W. et al. (2025). OneVOS: Unifying Video Object Segmentation with All-in-One Transformer Framework. In: Leonardis, A., Ricci, E., Roth, S., Russakovsky, O., Sattler, T., Varol, G. (eds) Computer Vision – ECCV 2024. ECCV 2024. Lecture Notes in Computer Science, vol 15116. Springer, Cham. https://doi.org/10.1007/978-3-031-73636-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-73636-0_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-73635-3

  • Online ISBN: 978-3-031-73636-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics