Abstract
Contemporary Video Object Segmentation (VOS) approaches typically consist stages of feature extraction, matching, memory management, and multiple objects aggregation. Recent advanced models either employ a discrete modeling for these components in a sequential manner, or optimize a combined pipeline through substructure aggregation. However, these existing explicit staged approaches prevent the VOS framework from being optimized as a unified whole, leading to the limited capacity and suboptimal performance in tackling complex videos. In this paper, we propose OneVOS, a novel framework that unifies the core components of VOS with All-in-One Transformer. Specifically, to unify all aforementioned modules into a vision transformer, we model all the features of frames, masks and memory for multiple objects as transformer tokens, and integrally accomplish feature extraction, matching and memory management of multiple objects through the flexible attention mechanism. Furthermore, a Unidirectional Hybrid Attention is proposed through a double decoupling of the original attention operation, to rectify semantic errors and ambiguities of stored tokens in OneVOS framework. Finally, to alleviate the storage burden and expedite inference, we propose the Dynamic Token Selector, which unveils the working mechanism of OneVOS and naturally leads to a more efficient version of OneVOS. Extensive experiments demonstrate the superiority of OneVOS, achieving state-of-the-art performance across 7 datasets, particularly excelling in complex LVOS and MOSE datasets with 70.1% and 66.4% \( J \& F\) scores, surpassing previous state-of-the-art methods by 4.2% and 7.0%, respectively. Code is available at: https://github.com/L599wy/OneVOS.
W. Li and Pinxue Guo—Equal contribution.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Bhat, G., et al.: Learning what to learn for video object segmentation. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020, Part II. LNCS, vol. 12347, pp. 777–794. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58536-5_46
Caelles, S., Maninis, K.K., Pont-Tuset, J., Leal-Taixé, L., Cremers, D., Van Gool, L.: One-shot video object segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 221–230 (2017)
Chen, B., et al.: Backbone is all your need: a simplified architecture for visual object tracking. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds.) ECCV 2022. LNCS, vol. 13682, pp. 375–392. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-20047-2_22
Chen, X., Li, Z., Yuan, Y., Yu, G., Shen, J., Qi, D.: State-aware tracker for real-time video object segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9384–9393 (2020)
Chen, X., Yan, B., Zhu, J., Wang, D., Yang, X., Lu, H.: Transformer tracking. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8126–8135 (2021)
Chen, Y., Pont-Tuset, J., Montes, A., Van Gool, L.: Blazingly fast video object segmentation with pixel-wise metric learning. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1189–1198 (2018)
Cheng, H.K., Schwing, A.G.: XMem: long-term video object segmentation with an Atkinson-Shiffrin memory model. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds.) ECCV 2022. LNCS, vol. 13688, pp. 640–658. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-19815-1_37
Cheng, H.K., Tai, Y.W., Tang, C.K.: Modular interactive video object segmentation: interaction-to-mask, propagation and difference-aware fusion. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5559–5568 (2021)
Cheng, H.K., Tai, Y.W., Tang, C.K.: Rethinking space-time networks with improved memory coverage for efficient video object segmentation. Adv. Neural. Inf. Process. Syst. 34, 11781–11794 (2021)
Cheng, J., Tsai, Y.H., Hung, W.C., Wang, S., Yang, M.H.: Fast and accurate online video object segmentation via tracking parts. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7415–7424 (2018)
Cheng, M.M., Mitra, N.J., Huang, X., Torr, P.H., Hu, S.M.: Global contrast based salient region detection. IEEE Trans. Pattern Anal. Mach. Intell. 37(3), 569–582 (2014)
Cui, Y., Jiang, C., Wang, L., Wu, G.: MixFormer: end-to-end tracking with iterative mixed attention. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 13608–13618 (2022)
Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: ImageNet: a large-scale hierarchical image database. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 248–255. IEEE (2009)
Ding, H., Liu, C., He, S., Jiang, X., Torr, P.H., Bai, S.: MOSE: a new dataset for video object segmentation in complex scenes. arXiv preprint arXiv:2302.01872 (2023)
Dosovitskiy, A., et al.: An image is worth 16\(\times \)16 words: transformers for image recognition at scale. arXiv preprint arXiv:2010.11929 (2020)
Duke, B., Ahmed, A., Wolf, C., Aarabi, P., Taylor, G.W.: SSTVOS: sparse spatiotemporal transformers for video object segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5912–5921 (2021)
Everingham, M., Van Gool, L., Williams, C.K., Winn, J., Zisserman, A.: The pascal visual object classes (VOC) challenge. Int. J. Comput. Vision 88, 303–338 (2010)
Fang, R., et al.: InstructSeq: unifying vision tasks with instruction-conditioned multi-modal sequence generation. arXiv preprint arXiv:2311.18835 (2023)
Gao, J., et al.: Coarse-to-fine amodal segmentation with shape prior. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 1262–1271 (2023)
Gao, P., Ma, T., Li, H., Lin, Z., Dai, J., Qiao, Y.: ConvMAE: masked convolution meets masked autoencoders. arXiv preprint arXiv:2205.03892 (2022)
Gao, S., Zhou, C., Ma, C., Wang, X., Yuan, J.: AiATrack: attention in attention for transformer visual tracking. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds.) ECCV 2022. LNCS, vol. 13682, pp. 146–164. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-20047-2_9
Guo, P., et al.: ClickVOS: click video object segmentation. arXiv preprint arXiv:2403.06130 (2024)
Guo, P., Zhang, W., Li, X., Zhang, W.: Adaptive online mutual learning bi-decoders for video object segmentation. IEEE Trans. Image Process. 31, 7063–7077 (2022)
Hariharan, B., Arbeláez, P., Bourdev, L., Maji, S., Malik, J.: Semantic contours from inverse detectors. In: 2011 International Conference on Computer Vision, pp. 991–998. IEEE (2011)
He, K., Chen, X., Xie, S., Li, Y., Dollár, P., Girshick, R.: Masked autoencoders are scalable vision learners. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 16000–16009 (2022)
Hong, L., et al.: LVOS: a benchmark for long-term video object segmentation. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 13480–13492 (2023)
Hong, L., et al.: OneTracker: unifying visual object tracking with foundation models and efficient tuning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 19079–19091 (2024)
Hong, L., Zhang, W., Chen, L., Zhang, W., Fan, J.: Adaptive selection of reference frames for video object segmentation. IEEE Trans. Image Process. 31, 1057–1071 (2021)
Hu, P., Wang, G., Kong, X., Kuen, J., Tan, Y.P.: Motion-guided cascaded refinement network for video object segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1400–1409 (2018)
Hu, Y.T., Huang, J.B., Schwing, A.G.: VideoMatch: Matching based video object segmentation. In: Proceedings of the European conference on computer vision (ECCV), pp. 54–70 (2018)
Huang, X., Xu, J., Tai, Y.W., Tang, C.K.: Fast video object segmentation with temporal aggregation network and dynamic template matching. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8879–8889 (2020)
Jang, E., Gu, S., Poole, B.: Categorical reparameterization with gumbel-softmax. arXiv preprint arXiv:1611.01144 (2016)
Johnander, J., Danelljan, M., Brissman, E., Khan, F.S., Felsberg, M.: A generative appearance model for end-to-end video object segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8953–8962 (2019)
Khoreva, A., Benenson, R., Ilg, E., Brox, T., Schiele, B.: Lucid data dreaming for video object segmentation. Int. J. Comput. Vision 127(9), 1175–1197 (2019)
Kristan, M., et al.: The sixth visual object tracking vot2018 challenge results. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018)
Li, M., Hu, L., Xiong, Z., Zhang, B., Pan, P., Liu, D.: Recurrent dynamic embedding for video object segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1332–1341 (2022)
Li, W., Fan, J., Guo, P., Hong, L., Zhang, W.: HFVOS: history-future integrated dynamic memory for video object segmentation. IEEE Trans. Circuits Syst. Video Technol. (2024)
Li, X., Loy, C.C.: Video object segmentation with joint re-identification and attention-aware mask propagation. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 90–105 (2018)
Lin, T.-Y., et al.: Microsoft COCO: common objects in context. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014, Part V. LNCS, vol. 8693, pp. 740–755. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_48
Lin, Z., et al.: SWEM: towards real-time video object segmentation with sequential weighted expectation-maximization. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1362–1372 (2022)
Liu, Z., et al.: Swin transformer: hierarchical vision transformer using shifted windows. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10012–10022 (2021)
Maninis, K.K., et al.: Video object segmentation without temporal information. IEEE Trans. Pattern Anal. Mach. Intell. 41(6), 1515–1530 (2018)
Nowozin, S.: Optimal decisions from probabilistic models: the intersection-over-union case. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 548–555 (2014)
Oh, S.W., Lee, J.Y., Sunkavalli, K., Kim, S.J.: Fast video object segmentation by reference-guided mask propagation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7376–7385 (2018)
Oh, S.W., Lee, J.Y., Xu, N., Kim, S.J.: Video object segmentation using space-time memory networks. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 9226–9235 (2019)
Perazzi, F., Khoreva, A., Benenson, R., Schiele, B., Sorkine-Hornung, A.: Learning video object segmentation from static images. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2663–2672 (2017)
Perazzi, F., Pont-Tuset, J., McWilliams, B., Van Gool, L., Gross, M., Sorkine-Hornung, A.: A benchmark dataset and evaluation methodology for video object segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 724–732 (2016)
Pont-Tuset, J., Perazzi, F., Caelles, S., Arbeláez, P., Sorkine-Hornung, A., Van Gool, L.: The 2017 DAVIS challenge on video object segmentation. arXiv preprint arXiv:1704.00675 (2017)
Rao, Y., Zhao, W., Liu, B., Lu, J., Zhou, J., Hsieh, C.J.: DynamicViT: efficient vision transformers with dynamic token sparsification. Adv. Neural. Inf. Process. Syst. 34, 13937–13949 (2021)
Seong, H., Hyun, J., Kim, E.: Kernelized memory network for video object segmentation. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12367, pp. 629–645. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58542-6_38
Seong, H., Oh, S.W., Lee, J.Y., Lee, S., Lee, S., Kim, E.: Hierarchical memory matching network for video object segmentation. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 12889–12898 (2021)
Shi, J., Yan, Q., Xu, L., Jia, J.: Hierarchical image saliency detection on extended CSSD. IEEE Trans. Pattern Anal. Mach. Intell. 38(4), 717–729 (2015)
Voigtlaender, P., Chai, Y., Schroff, F., Adam, H., Leibe, B., Chen, L.C.: FEELVOS: fast end-to-end embedding learning for video object segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9481–9490 (2019)
Voigtlaender, P., Leibe, B.: Online adaptation of convolutional neural networks for video object segmentation. arXiv preprint arXiv:1706.09364 (2017)
Wang, H., Jiang, X., Ren, H., Hu, Y., Bai, S.: SwiftNet: real-time video object segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1296–1305 (2021)
Wang, J., et al.: Look before you match: Instance understanding matters in video object segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2268–2278 (2023)
Wang, W., Shen, J., Porikli, F., Yang, R.: Semi-supervised video object segmentation with super-trajectories. IEEE Trans. Pattern Anal. Mach. Intell. 41(4), 985–998 (2018)
Wu, Q., Yang, T., Liu, Z., Wu, B., Shan, Y., Chan, A.B.: DropMAE: masked autoencoders with spatial-attention dropout for tracking tasks. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 14561–14571 (2023)
Wu, Q., Yang, T., Wu, W., Chan, A.B.: Scalable video object segmentation with simplified framework. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 13879–13889 (2023)
Xiao, H., Feng, J., Lin, G., Liu, Y., Zhang, M.: MoNet: deep motion exploitation for video object segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1140–1148 (2018)
Xu, N., et al.: YouTube-VOS: a large-scale video object segmentation benchmark. arXiv preprint arXiv:1809.03327 (2018)
Xu, S., Liu, D., Bao, L., Liu, W., Zhou, P.: MHP-VOS: multiple hypotheses propagation for video object segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 314–323 (2019)
Yan, S., Xu, X., Hong, L., Chen, W., Zhang, W., Zhang, W.: PanoVOS: bridging non-panoramic and panoramic views with transformer for video segmentation. arXiv preprint arXiv:2309.12303 (2023)
Yan, S., et al.: Referred by multi-modality: a unified temporal transformer for video object segmentation. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 38, pp. 6449–6457 (2024)
Yang, Z., Wei, Y., Yang, Y.: Collaborative video object segmentation by foreground-background integration. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12350, pp. 332–348. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58558-7_20
Yang, Z., Wei, Y., Yang, Y.: Associating objects with transformers for video object segmentation. In: Advances in Neural Information Processing Systems (NeurIPS) (2021)
Yang, Z., Wei, Y., Yang, Y.: Collaborative video object segmentation by multi-scale foreground-background integration. IEEE Trans. Pattern Anal. Mach. Intell. 44(9), 4701–4712 (2021)
Yang, Z., Yang, Y.: Decoupling features in hierarchical propagation for video object segmentation. In: Advances in Neural Information Processing Systems (NeurIPS) (2022)
Ye, B., Chang, H., Ma, B., Shan, S., Chen, X.: Joint feature learning and relation modeling for tracking: a one-stream framework. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds.) ECCV 2022. LNCS, vol. 13682, pp. 341–357. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-20047-2_20
Zhou, X., et al.: Reading relevant feature from global representation memory for visual object tracking. In: Advances in Neural Information Processing Systems, vol. 36 (2024)
Acknowledgements
This work was supported in part by National Natural Science Foundation of China (No. 62072112), and Scientific and Technological Innovation Action Plan of Shanghai Science and Technology Committee (No. 22511101502, No. 22511102202 and No. 21DZ2203300).
Author information
Authors and Affiliations
Corresponding authors
Editor information
Editors and Affiliations
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
Copyright information
© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Li, W. et al. (2025). OneVOS: Unifying Video Object Segmentation with All-in-One Transformer Framework. In: Leonardis, A., Ricci, E., Roth, S., Russakovsky, O., Sattler, T., Varol, G. (eds) Computer Vision – ECCV 2024. ECCV 2024. Lecture Notes in Computer Science, vol 15116. Springer, Cham. https://doi.org/10.1007/978-3-031-73636-0_2
Download citation
DOI: https://doi.org/10.1007/978-3-031-73636-0_2
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-73635-3
Online ISBN: 978-3-031-73636-0
eBook Packages: Computer ScienceComputer Science (R0)