[go: up one dir, main page]

Skip to main content

Multi-center Ovarian Tumor Classification Using Hierarchical Transformer-Based Multiple-Instance Learning

  • Conference paper
  • First Online:
Cancer Prevention, Detection, and Intervention (CaPTion 2024)

Abstract

Malignant ovarian tumors (OTs) are a leading cause of gynecological cancer deaths, and often remain asymptomatic until advanced stages, making early and accurate diagnosis crucial for effective treatment and good patient outcome. Current diagnostic methods often fall short due to the heterogeneous nature of OTs and the complexities in distinguishing benign from malignant forms. To overcome these limitations, this study proposes a novel framework leveraging transformer-based multiple-instance learning (MIL) and hierarchical self-supervised pre-training. To validate the model, a comprehensive multi-center dataset has been compiled, encompassing diverse patient demographics and imaging protocols. Benchmarking against conventional radiomics methods and other deep learning approaches, the hierarchical MIL model demonstrates superior performance with a median AUROC of 0.84 and high recall of 0.91. These results highlight significant improvements in sensitivity, essential for minimizing false negatives in clinical settings. The performed study emphasizes the importance of multi-center validation and external dataset testing to ensure generalization of the proposed model and obtain a higher robustness. The encountered complexity of multi-center data is found significant, since various clinical factors play an influential role. This makes baseline comparisons virtually impossible and the need for more multi-center research increasingly compelling and encouraging.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. WHO Ovary Tumor classification. http://www.pathologyoutlines.com/topic/ovarytumorwhoclassif.html

  2. Caron, M., Touvron, H., Misra, I., Jégou, H., Mairal, J., Bojanowski, P., Joulin, A.: Emerging Properties in Self-Supervised Vision Transformers (2021). https://doi.org/10.48550/ARXIV.2104.14294, https://arxiv.org/abs/2104.14294, publisher: arXiv Version Number: 2

  3. Chen, R.J., et al.: Scaling Vision Transformers to Gigapixel Images via Hierarchical Self-Supervised Learning, pp. 16144–16155 (2022). https://openaccess.thecvf.com/content/CVPR2022/html/Chen_Scaling_Vision_Transformers_to_Gigapixel_Images_via_Hierarchical_Self-Supervised_Learning_CVPR_2022_paper.html

  4. Cho, K.R., Shih, I.M.: Ovarian cancer. Ann. Rev. Pathol. 4, 287–313 (2009). https://doi.org/10.1146/annurev.pathol.4.110807.092246

  5. Claessens, C.H.B., et al.: Evaluating task-specific augmentations in self-supervised pre-training for 3D medical image analysis. In: Medical Imaging 2024: Image Processing, vol. 12926, pp. 403–410. SPIE, April 2024. https://doi.org/10.1117/12.3000850. https://www.spiedigitallibrary.org/conference-proceedings-of-spie/12926/129261L/Evaluating-task-specific-augmentations-in-self-supervised-pre-training-for/10.1117/12.3000850.full

  6. Geomini, P.M.A.J., Kruitwagen, R.F.P.M., Bremer, G.L., Massuger, L., Mol, B.W.J.: Should we centralise care for the patient suspected of having ovarian malignancy? Gynecol. Oncol. 122(1), 95–99 (2011). https://doi.org/10.1016/j.ygyno.2011.03.005. https://www.sciencedirect.com/science/article/pii/S0090825811001739

  7. Grill, J.B., et al.: Bootstrap your own latent: a new approach to self-supervised Learning (2020). https://doi.org/10.48550/ARXIV.2006.07733. https://arxiv.org/abs/2006.07733, publisher: arXiv Version Number: 3

  8. Ilse, M., Tomczak, J.M., Welling, M.: Attention-based Deep Multiple Instance Learning (2018). https://doi.org/10.48550/ARXIV.1802.04712. https://arxiv.org/abs/1802.04712, publisher: [object Object] Version Number: 4

  9. Koch, A.H., et al.: Analysis of computer-aided diagnostics in the preoperative diagnosis of ovarian cancer: a systematic review. Insights Imaging 14(1), 34 (2023). https://doi.org/10.1186/s13244-022-01345-x. https://doi.org/10.1186/s13244-022-01345-x

  10. Li, J., Zhang, T., Ma, J., Zhang, N., Zhang, Z., Ye, Z.: Machine-learning-based contrast-enhanced computed tomography radiomic analysis for categorization of ovarian tumors. Front. Oncol. 12, 934735 (2022). https://doi.org/10.3389/fonc.2022.934735

    Article  Google Scholar 

  11. Li, S., et al.: A radiomics approach for automated diagnosis of ovarian neoplasm malignancy in computed tomography. Sci. Rep. 11, 8730 (2021). https://doi.org/10.1038/s41598-021-87775-x

  12. Liu, P., Liang, X., Liao, S., Lu, Z.: Pattern classification for ovarian tumors by integration of radiomics and deep learning features. Current Med. Imaging 18(14), 1486–1502 (2022). https://doi.org/10.2174/1573405618666220516122145

    Article  Google Scholar 

  13. Lof, P., et al.: Psychological impact of referral to an oncology hospital on patients with an ovarian mass. Int. J. Gynecologic Cancer 33(1), January 2023. https://doi.org/10.1136/ijgc-2022-003753, https://ijgc.bmj.com/content/33/1/74, publisher: BMJ Specialist Journals Section: Original research

  14. Ma, J., et al.: AbdomenCT-1K: is abdominal organ segmentation a solved problem? IEEE Trans. Pattern Anal. Mach. Intell. 44(10), 6695–6714 (2022). https://doi.org/10.1109/TPAMI.2021.3100536. https://ieeexplore.ieee.org/document/9497733/

  15. Meys, E.M.J., et al.: Subjective assessment versus ultrasound models to diagnose ovarian cancer: a systematic review and meta-analysis. Europ. J. Cancer 58, 17–29 (2016). https://doi.org/10.1016/j.ejca.2016.01.007. https://www.sciencedirect.com/science/article/pii/S0959804916000459

  16. Mulder, E.E., Gelderblom, M.E., Schoot, D., Vergeldt, T.F., Nijssen, D.L., Piek, J.M.: External validation of Risk of Malignancy Index compared to IOTA Simple Rules. Acta Radiologica (Stockholm, Sweden: 1987) 62(5), 673–678 (2021). https://doi.org/10.1177/0284185120933990

  17. Myronenko, A., Xu, Z., Yang, D., Roth, H., Xu, D.: Accounting for Dependencies in Deep Learning Based Multiple Instance Learning for Whole Slide Imaging (2021https://doi.org/10.48550/ARXIV.2111.01556, https://arxiv.org/abs/2111.01556, publisher: [object Object] Version Number: 1

  18. Park, H., Qin, L., Guerra, P., Bay, C.P., Shinagare, A.B.: Decoding incidental ovarian lesions: use of texture analysis and machine learning for characterization and detection of malignancy. Abdominal Radiology 46(6), 2376–2383 (2021). https://doi.org/10.1007/s00261-020-02668-3

    Article  Google Scholar 

  19. Timmerman, D., et al.: ESGO/ISUOG/IOTA/ESGE Consensus Statement on pre-operative diagnosis of ovarian tumors. Int. J. Gynecol. Cancer: Official J. Int. Gynecol. Cancer Soc. 31(7), 961–982 (2021). https://doi.org/10.1136/ijgc-2021-002565

    Article  Google Scholar 

  20. Togashi, K.: Ovarian cancer: the clinical role of US, CT, and MRI. Eur. Radiol. 13(6), L87–L104 (2003) 10.1007/s00330-003-1964-y, https://doi.org/10.1007/s00330-003-1964-y

  21. Woo, Y.L., Kyrgiou, M., Bryant, A., Everett, T., Dickinson, H.O.: Centralisation of services for gynaecological cancers - A Cochrane systematic review. Gynecol. Oncol. 126(2), 286–290 (2012) 10.1016/j.ygyno.2012.04.012, https://www.sciencedirect.com/science/article/pii/S0090825812002673

Download references

Acknowledgements

We gratefully acknowledge the Catharina Hospital Eindhoven, the Amphia Hospital Breda, and The Dutch Cancer Institute - Antoni van Leeuwenhoek Hospital Amsterdam for their invaluable data collection support essential to this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cris H.B. Claessens .

Editor information

Editors and Affiliations

Ethics declarations

Disclosure of Interests

The authors have no competing interests to declare that are relevant to the content of this article.

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

H.B. Claessens, C. et al. (2025). Multi-center Ovarian Tumor Classification Using Hierarchical Transformer-Based Multiple-Instance Learning. In: Ali, S., van der Sommen, F., Papież, B.W., Ghatwary, N., Jin, Y., Kolenbrander, I. (eds) Cancer Prevention, Detection, and Intervention. CaPTion 2024. Lecture Notes in Computer Science, vol 15199. Springer, Cham. https://doi.org/10.1007/978-3-031-73376-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-73376-5_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-73375-8

  • Online ISBN: 978-3-031-73376-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics