[go: up one dir, main page]

Skip to main content

A Unified Image Compression Method for Human Perception and Multiple Vision Tasks

  • Conference paper
  • First Online:
Computer Vision – ECCV 2024 (ECCV 2024)

Abstract

Recent advancements in end-to-end image compression demonstrate the potential to surpass traditional codecs regarding rate-distortion performance. However, current methods either prioritize human perceptual quality or solely optimize for one or a few predetermined downstream tasks, neglecting a more common scenario that involves a variety of unforeseen machine vision tasks. In this paper, we propose a Diffusion-based Multiple-Task Unified Image Compression framework that aims to expand the boundary of traditional image compression by incorporating human perception and multiple vision tasks in open-set scenarios. Our proposed method comprises a Multi-Task Collaborative Embedding module and a Diffusion-based Invariant Knowledge Learning module. The former module facilitates collaborative embedding for multiple tasks, while the latter module boosts generalization toward unforeseen tasks by distilling the invariant knowledge from seen vision tasks. Experiments show that the proposed method extracts compact and versatile embeddings for human and machine vision collaborative compression, resulting in superior performance. Specifically, our method outperforms the state-of-the-art by 52.25%/51.68%/48.87%/48.07%/6.29% BD-rate reduction in terms of mAP/mAP/aAcc/PQ-all/accuracy on the MS-COCO for object detection/instance segmentation/semantic segmentation/panoptic segmentation and video question answering tasks, respectively.

S. Guo and L. Sui—Equal contribution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bai, Y., et al.: Towards end-to-end image compression and analysis with transformers. In: AAAI, pp. 104–112 (2022)

    Google Scholar 

  2. Ballé, J., Laparra, V., Simoncelli, E.P.: End-to-end optimized image compression. In: ICLR (2017)

    Google Scholar 

  3. Ballé, J., Minnen, D., Singh, S., Hwang, S.J., Johnston, N.: Variational image compression with a scale hyperprior. In: ICLR (2018)

    Google Scholar 

  4. Bjontegaard, G.: Calculation of average PSNR differences between RD-curves. ITU SG16 Doc. VCEG-M33 (2001)

    Google Scholar 

  5. Blau, Y., Michaeli, T.: Rethinking lossy compression: the rate-distortion-perception tradeoff. In: ICML, pp. 675–685. PMLR (2019)

    Google Scholar 

  6. Bross, B., et al.: Overview of the versatile video coding (VVC) standard and its applications. IEEE TCSVT 31(10), 3736–3764 (2021)

    Google Scholar 

  7. Chamain, L.D., Racapé, F., Bégaint, J., Pushparaja, A., Feltman, S.: End-to-end optimized image compression for machines, a study. In: DCC, pp. 163–172. IEEE (2021)

    Google Scholar 

  8. Chen, T., Liu, H., Ma, Z., Shen, Q., Cao, X., Wang, Y.: End-to-end learnt image compression via non-local attention optimization and improved context modeling. IEEE TIP 30, 3179–3191 (2021)

    Google Scholar 

  9. Chen, Z., Fan, K., Wang, S., Duan, L., Lin, W., Kot, A.C.: Toward intelligent sensing: intermediate deep feature compression. IEEE TIP 29, 2230–2243 (2019)

    Google Scholar 

  10. Cheng, B., Misra, I., Schwing, A.G., Kirillov, A., Girdhar, R.: Masked-attention mask transformer for universal image segmentation. In: CVPR, pp. 1290–1299 (2022)

    Google Scholar 

  11. Cheng, Z., Sun, H., Takeuchi, M., Katto, J.: Learned image compression with discretized gaussian mixture likelihoods and attention modules. In: CVPR, pp. 7939–7948 (2020)

    Google Scholar 

  12. Choi, J., Han, B.: Task-aware quantization network for JPEG image compression. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12365, pp. 309–324. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58565-5_19

    Chapter  Google Scholar 

  13. Dhariwal, P., Nichol, A.: Diffusion models beat GANs on image synthesis. In: NeurIPS, vol. 34, pp. 8780–8794 (2021)

    Google Scholar 

  14. Duan, L., Liu, J., Yang, W., Huang, T., Gao, W.: Video coding for machines: a paradigm of collaborative compression and intelligent analytics. IEEE TIP 29, 8680–8695 (2020)

    Google Scholar 

  15. Duan, Z., Lu, M., Ma, Z., Zhu, F.: Lossy image compression with quantized hierarchical VAEs. In: WACV, pp. 198–207 (2023)

    Google Scholar 

  16. Feng, Y., Ji, S., Liu, Y.S., Du, S., Dai, Q., Gao, Y.: Hypergraph-based multi-modal representation for open-set 3d object retrieval. IEEE TPAMI (2023)

    Google Scholar 

  17. Ge, X., et al.: Task-aware encoder control for deep video compression. In: CVPR, pp. 26036–26045 (2024)

    Google Scholar 

  18. Guo, S., Chen, Z., Zhao, Y., Zhang, N., Li, X., Duan, L.: Toward scalable image feature compression: a content-adaptive and diffusion-based approach. In: ACM MM, pp. 1431–1442 (2023)

    Google Scholar 

  19. He, D., Yang, Z., Peng, W., Ma, R., Qin, H., Wang, Y.: ELIC: efficient learned image compression with unevenly grouped space-channel contextual adaptive coding. In: CVPR, pp. 5718–5727 (2022)

    Google Scholar 

  20. He, D., Zheng, Y., Sun, B., Wang, Y., Qin, H.: Checkerboard context model for efficient learned image compression. In: CVPR, pp. 14771–14780 (2021)

    Google Scholar 

  21. He, K., Gkioxari, G., Dollár, P., Girshick, R.: Mask R-CNN. In: ICCV, pp. 2961–2969 (2017)

    Google Scholar 

  22. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: CVPR, pp. 770–778 (2016)

    Google Scholar 

  23. Hu, Y., Yang, S., Yang, W., Duan, L.Y., Liu, J.: Towards coding for human and machine vision: a scalable image coding approach. In: ICME, pp. 1–6. IEEE (2020)

    Google Scholar 

  24. Huang, Z., Jia, C., Wang, S., Ma, S.: Visual analysis motivated rate-distortion model for image coding. In: ICME, pp. 1–6. IEEE (2021)

    Google Scholar 

  25. Kim, Y., et al.: End-to-end learnable multi-scale feature compression for VCM. IEEE TCSVT (2023)

    Google Scholar 

  26. Kirillov, A., He, K., Girshick, R., Rother, C., Dollár, P.: Panoptic segmentation. In: CVPR, pp. 9404–9413 (2019)

    Google Scholar 

  27. Le, N., Zhang, H., Cricri, F., Ghaznavi-Youvalari, R., Rahtu, E.: Image coding for machines: an end-to-end learned approach. In: ICASSP, pp. 1590–1594. IEEE (2021)

    Google Scholar 

  28. Le, N., Zhang, H., Cricri, F., Ghaznavi-Youvalari, R., Tavakoli, H.R., Rahtu, E.: Learned image coding for machines: a content-adaptive approach. In: ICME, pp. 1–6. IEEE (2021)

    Google Scholar 

  29. Li, J., Li, D., Xiong, C., Hoi, S.: BLIP: bootstrapping language-image pre-training for unified vision-language understanding and generation. In: ICML, pp. 12888–12900. PMLR (2022)

    Google Scholar 

  30. Li, M., Gao, S., Feng, Y., Shi, Y., Wang, J.: Content-oriented learned image compression. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds.) ECCV 2022. LNCS, vol. 13679, pp. 632–647. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-19800-7_37

    Chapter  Google Scholar 

  31. Lin, T.Y., Dollár, P., Girshick, R., He, K., Hariharan, B., Belongie, S.: Feature pyramid networks for object detection. In: CVPR, pp. 2117–2125 (2017)

    Google Scholar 

  32. Lin, T.-Y., et al.: Microsoft COCO: common objects in context. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 740–755. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_48

    Chapter  Google Scholar 

  33. Lin, X., et al.: DiffBIR: towards blind image restoration with generative diffusion prior. arXiv preprint arXiv:2308.15070 (2023)

  34. Liu, K., Liu, D., Li, L., Yan, N., Li, H.: Semantics-to-signal scalable image compression with learned revertible representations. IJCV 129(9), 2605–2621 (2021)

    Article  Google Scholar 

  35. Liu, L., Hu, Z., Chen, Z., Xu, D.: ICMH-net: neural image compression towards both machine vision and human vision. In: ACM MM, pp. 8047–8056 (2023)

    Google Scholar 

  36. Lu, M., Guo, P., Shi, H., Cao, C., Ma, Z.: Transformer-based image compression. In: DCC, p. 469. IEEE (2022)

    Google Scholar 

  37. Lu, W., Chen, J., Xue, F.: Using computer vision to recognize composition of construction waste mixtures: a semantic segmentation approach. Resour. Conserv. Recycl. 178, 106022 (2022)

    Article  Google Scholar 

  38. Van der Maaten, L., Hinton, G.: Visualizing data using t-SNE. J. Mach. Learn. Res. 9(11) (2008)

    Google Scholar 

  39. Mentzer, F., Toderici, G.D., Tschannen, M., Agustsson, E.: High-fidelity generative image compression. In: NeurIPS, vol. 33, pp. 11913–11924 (2020)

    Google Scholar 

  40. Minnen, D., Ballé, J., Toderici, G.D.: Joint autoregressive and hierarchical priors for learned image compression. In: NeurIPS, vol. 31 (2018)

    Google Scholar 

  41. Minnen, D., Singh, S.: Channel-wise autoregressive entropy models for learned image compression. In: ICIP, pp. 3339–3343. IEEE (2020)

    Google Scholar 

  42. Müller-Franzes, G., et al.: Diffusion probabilistic models beat GANs on medical images. arXiv preprint arXiv:2212.07501 (2022)

  43. Pennebaker, W.B., Mitchell, J.L.: JPEG: Still Image Data Compression Standard. Springer, Heidelberg (1992)

    Google Scholar 

  44. Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. In: NeurIPS, vol. 28 (2015)

    Google Scholar 

  45. Rombach, R., Blattmann, A., Lorenz, D., Esser, P., Ommer, B.: High-resolution image synthesis with latent diffusion models. In: CVPR, pp. 10684–10695 (2022)

    Google Scholar 

  46. Ronneberger, O., Fischer, P., Brox, T.: U-net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  47. Ruder, S.: An overview of gradient descent optimization algorithms. arXiv preprint arXiv:1609.04747 (2016)

  48. Si, Z., Shen, K.: Research on the WebP image format. In: Xu, M., Yang, L., Ouyang, Y., Ouyang, Y. (eds.) Advanced Graphic Communications, Packaging Technology and Materials. LNEE, vol. 369, pp. 271–277. Springer, Singapore (2016). https://doi.org/10.1007/978-981-10-0072-0_35

    Chapter  Google Scholar 

  49. Strudel, R., Garcia, R., Laptev, I., Schmid, C.: Segmenter: transformer for semantic segmentation. In: ICCV, pp. 7262–7272 (2021)

    Google Scholar 

  50. Suzuki, S., Takagi, M., Hayase, K., Onishi, T., Shimizu, A.: Image pre-transformation for recognition-aware image compression. In: ICIP, pp. 2686–2690. IEEE (2019)

    Google Scholar 

  51. Xiang, J., Tian, K., Zhang, J.: MIMT: masked image modeling transformer for video compression. In: ICLR (2022)

    Google Scholar 

  52. Yang, M., Yu, K., Zhang, C., Li, Z., Yang, K.: DenseASPP for semantic segmentation in street scenes. In: CVPR, pp. 3684–3692 (2018)

    Google Scholar 

  53. Yang, W., Huang, H., Hu, Y., Duan, L.Y., Liu, J.: Video coding for machines: compact visual representation compression for intelligent collaborative analytics. IEEE TPAMI (2024)

    Google Scholar 

  54. Yoon, C., et al.: MEDO: minimizing effective distortions only for machine-oriented visual feature compression. In: VCIP, pp. 1–5. IEEE (2023)

    Google Scholar 

  55. Zamir, A.R., Sax, A., Shen, W., Guibas, L.J., Malik, J., Savarese, S.: Taskonomy: Disentangling task transfer learning. In: CVPR, pp. 3712–3722 (2018)

    Google Scholar 

  56. Zeng, H., Peng, S., Li, D.: DeepLabv3+ semantic segmentation model based on feature cross attention mechanism. In: JPCS, p. 012106. IOP Publishing (2020)

    Google Scholar 

  57. Zhu, X., Song, J., Gao, L., Zheng, F., Shen, H.T.: Unified multivariate gaussian mixture for efficient neural image compression. In: CVPR, pp. 17612–17621 (2022)

    Google Scholar 

  58. Zhu, Y., Yang, Y., Cohen, T.: Transformer-based transform coding. In: ICLR (2021)

    Google Scholar 

  59. Zou, R., Song, C., Zhang, Z.: The devil is in the details: window-based attention for image compression. In: CVPR, pp. 17492–17501 (2022)

    Google Scholar 

Download references

Acknowledgement

This work was supported by the National Natural Science Foundation of China under Grant 62088102, in part by the PKU-NTU Joint Research Institute (JRI) sponsored by a donation from the Ng Teng Fong Charitable Foundation and in part by AI Joint Lab of Future Urban Infrastructure sponsored by Fuzhou Chengtou New Infrastructure Group and Boyun Vision Co. Ltd.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lingyu Duan .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 12838 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Guo, S., Sui, L., Zhang, C., Chen, Z., Yang, W., Duan, L. (2025). A Unified Image Compression Method for Human Perception and Multiple Vision Tasks. In: Leonardis, A., Ricci, E., Roth, S., Russakovsky, O., Sattler, T., Varol, G. (eds) Computer Vision – ECCV 2024. ECCV 2024. Lecture Notes in Computer Science, vol 15129. Springer, Cham. https://doi.org/10.1007/978-3-031-73209-6_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-73209-6_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-73208-9

  • Online ISBN: 978-3-031-73209-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics