Abstract
We present Emu Video, a text-to-video generation model that factorizes the generation into two steps: first generating an image conditioned on the text, and then generating a video conditioned on the text and the generated image. We identify critical design decisions–adjusted noise schedules for diffusion, and multi-stage training–that enable us to directly generate high quality and high resolution videos, without requiring a deep cascade of models as in prior work. In human evaluations, our generated videos are strongly preferred in quality compared to all prior work–\(81\%\) vs. Google’s Imagen Video, \(90\%\) vs. Nvidia’s PYOCO, and \(96\%\) vs. Meta’s Make-A-Video. Our model outperforms commercial solutions such as RunwayML’s Gen2 and Pika Labs. Finally, our factorizing approach naturally lends itself to animating images based on a user’s text prompt, where our generations are preferred \(96\%\) over prior work.
R. Girdhar, M. Singh, A. Brown, Q. Duval, S. Azadi and I. Misra—Equal technical contribution.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
Due to lack of access to training data of SDXL [57] and their underlying model, we leveraged their corresponding APIs for our comparison.
References
Aghajanyan, A., et al.: Cm3: a causal masked multimodal model of the internet. arXiv:abs/2201.07520 (2022)
Aldausari, N., Sowmya, A., Marcus, N., Mohammadi, G.: Video generative adversarial networks: a review. ACM Comput. Surv. 55(2) (2022). https://doi.org/10.1145/3487891, https://doi.org/10.1145/3487891
An, J., et al.: Latent-shift: Latent diffusion with temporal shift for efficient text-to-video generation (2023)
Babaeizadeh, M., Finn, C., Erhan, D., Campbell, R.H., Levine, S.: Stochastic variational video prediction. In: ICLR (2018). https://openreview.net/forum?id=rk49Mg-CW
Babaeizadeh, M., Saffar, M.T., Nair, S., Levine, S., Finn, C., Erhan, D.: FITVID: overfitting in pixel-level video prediction. arXiv preprint arXiv:2106.13195 (2020)
Blattmann, A., et al.: Align your latents: high-resolution video synthesis with latent diffusion models. In: 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 22563–22575 (2023). https://api.semanticscholar.org/CorpusID:258187553
Blattmann, A., et al.: Stable video diffusion: scaling latent video diffusion models to large datasets. arXiv preprint arXiv:2311.15127 (2023)
Brock, A., Donahue, J., Simonyan, K.: Large scale GAN training for high fidelity natural image synthesis. In: International Conference on Learning Representations (2019). https://openreview.net/forum?id=B1xsqj09Fm
Brooks, T., et al.: Generating long videos of dynamic scenes. In: NeurIPS (2022)
Brooks, T., Holynski, A., Efros, A.A.: Instructpix2pix: learning to follow image editing instructions. In: CVPR (2023)
Brown, T.B., et al.: Language models are few-shot learners. preprint arXiv:2005.14165 (2020)
Chen, H., et al.: Videocrafter1: Open diffusion models for high-quality video generation. arXiv:2310.19512 (2023)
Chen, T.: On the importance of noise scheduling for diffusion models. arXiv preprint arXiv:2301.10972 (2023)
Chen, W., et al.: Control-a-video: controllable text-to-video generation with diffusion models. arXiv preprint arXiv:2305.13840 (2023)
Chung, H.W., et al.: Scaling instruction-finetuned language models. arXiv preprint arXiv:2210.11416 (2022)
Clark, A., Donahue, J., Simonyan, K.: Adversarial video generation on complex datasets (2019)
Dai, X., et al.: Emu: Enhancing image generation models using photogenic needles in a haystack. arXiv preprint arXiv:2309.15807 (2023)
Denton, E., Fergus, R.: Stochastic video generation with a learned prior. In: Dy, J., Krause, A. (eds.) Proceedings of the 35th International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 80, pp. 1174–1183. PMLR (2018). https://proceedings.mlr.press/v80/denton18a.html
Dhariwal, P., Nichol, A.: Diffusion models beat GANs on image synthesis (2021)
Ding, M., Zheng, W., Hong, W., Tang, J.: Cogview2: faster and better text-to-image generation via hierarchical transformers. In: NeurIPS (2022)
Donahue, J., Krahenbühl, P., Darrell, T.: Adversarial feature learning. In: ICLR (2016)
Esser, P., Chiu, J., Atighehchian, P., Granskog, J., Germanidis, A.: Structure and content-guided video synthesis with diffusion models (2023)
Esser, P., Rombach, R., Ommer, B.: Taming transformers for high-resolution image synthesis. In: CVPR (2021)
Fei, H., Wu, S., Ji, W., Zhang, H., Chua, T.S.: Empowering dynamics-aware text-to-video diffusion with large language models (2023)
Finn, C., Goodfellow, I., Levine, S.: Unsupervised learning for physical interaction through video prediction. In: Proceedings of the 30th International Conference on Neural Information Processing Systems. NIPS’16, Red Hook, NY, USA, pp. 64–72. Curran Associates Inc. (2016)
Fleiss, J.L., Cohen, J.: The equivalence of weighted kappa and the intraclass correlation coefficient as measures of reliability. Educ. Psychol. Measur. 33(3), 613–619 (1973)
Fu, T.J., et al.: Tell me what happened: Unifying text-guided video completion via multimodal masked video generation. In: CVPR, pp. 10681–10692 (2023)
Gafni, O., Polyak, A., Ashual, O., Sheynin, S., Parikh, D., Taigman, Y.: Make-a-scene: scene-based text-to-image generation with human priors. arXiv preprint arXiv:2203.13131 (2022)
Gafni, O., Polyak, A., Ashual, O., Sheynin, S., Parikh, D., Taigman, Y.: Make-a-scene: scene-based text-to-image generation with human priors. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds.) ECCV 2022. LNCS, vol. 13675, pp. 89–106. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-19784-0_6
Ge, S., et al.: Preserve your own correlation: a noise prior for video diffusion models (2023)
Gu, J., et al.: Reuse and diffuse: iterative denoising for text-to-video generation (2023)
Gupta, A., Tian, S., Zhang, Y., Wu, J., Martín-Martín, R., Fei-Fei, L.: Maskvit: masked visual pre-training for video prediction. In: ICLR (2023). https://openreview.net/forum?id=QAV2CcLEDh
Harvey, W., Naderiparizi, S., Masrani, V., Weilbach, C., Wood, F.: Flexible diffusion modeling of long videos. In: Koyejo, S., Mohamed, S., Agarwal, A., Belgrave, D., Cho, K., Oh, A. (eds.) NeurIPS, vol. 35, pp. 27953–27965. Curran Associates, Inc. (2022). https://proceedings.neurips.cc/paper_files/paper/2022/file/b2fe1ee8d936ac08dd26f2ff58986c8f-Paper-Conference.pdf
He, Y., Yang, T., Zhang, Y., Shan, Y., Chen, Q.: Latent video diffusion models for high-fidelity long video generation (2023)
Ho, J., et al.: Imagen video: High definition video generation with diffusion models (2022)
Ho, J., Jain, A., Abbeel, P.: Denoising diffusion probabilistic models. arXiv preprint arxiv:2006.11239 (2020)
Ho, J., Saharia, C., Chan, W., Fleet, D.J., Norouzi, M., Salimans, T.: Cascaded diffusion models for high fidelity image generation. arXiv preprint arXiv:2106.15282 (2021)
Ho, J., Salimans, T.: Classifier-free diffusion guidance. arXiv preprint arXiv:2207.12598 (2022)
Ho, J., Salimans, T., Gritsenko, A., Chan, W., Norouzi, M., Fleet, D.J.: Video diffusion models. In: Koyejo, S., Mohamed, S., Agarwal, A., Belgrave, D., Cho, K., Oh, A. (eds.) NeurIPS, vol. 35, pp. 8633–8646. Curran Associates, Inc. (2022). https://proceedings.neurips.cc/paper_files/paper/2022/file/39235c56aef13fb05a6adc95eb9d8d66-Paper-Conference.pdf
Hong, S., Seo, J., Hong, S., Shin, H., Kim, S.: Large language models are frame-level directors for zero-shot text-to-video generation (2023)
Hong, W., Ding, M., Zheng, W., Liu, X., Tang, J.: Cogvideo: Large-scale pretraining for text-to-video generation via transformers (2022)
Kalchbrenner, N., et al.: Video pixel networks. In: Precup, D., Teh, Y.W. (eds.) Proceedings of the 34th International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 70, pp. 1771–1779. PMLR (2017). https://proceedings.mlr.press/v70/kalchbrenner17a.html
Kang, M., et al.: Scaling up GANs for text-to-image synthesis. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2023)
Khachatryan, L., et al.: Text2video-zero: text-to-image diffusion models are zero-shot video generators. arXiv preprint arXiv:2303.13439 (2023)
Kim, T., Ahn, S., Bengio, Y.: Variational Temporal Abstraction. Curran Associates Inc., Red Hook (2019)
Kumar, M., et al.: Videoflow: a conditional flow-based model for stochastic video generation. In: ICLR (2020). https://openreview.net/forum?id=rJgUfTEYvH
Labs, P.: Pika labs. https://www.pika.art/
Laptev, I., Lindeberg, T.: Space-time interest points. In: ICCV (2003)
Lee, S., Kong, C., Jeon, D., Kwak, N.: Aadiff: Audio-aligned video synthesis with text-to-image diffusion (2023)
Lian, L., Shi, B., Yala, A., Darrell, T., Li, B.: LLM-grounded video diffusion models. arXiv preprint arXiv:2309.17444 (2023)
Lin, S., Liu, B., Li, J., Yang, X.: Common diffusion noise schedules and sample steps are flawed. arXiv preprint arXiv:2305.08891 (2023)
Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. arXiv preprint arXiv:1711.05101 (2017)
Mathieu, M., Couprie, C., LeCun, Y.: Deep multi-scale video prediction beyond mean square error (2016)
ML, R.: Gen2. https://research.runwayml.com/gen2
Nichol, A., et al.: Glide: towards photorealistic image generation and editing with text-guided diffusion models. arXiv preprint arXiv:2112.10741 (2021)
Nichol, A., et al.: Glide: towards photorealistic image generation and editing with text-guided diffusion models (2022)
Podell, D., et al.: SDXL: improving latent diffusion models for high-resolution image synthesis. arXiv preprint arXiv:2307.01952 (2023)
Radford, A., et al.: Learning transferable visual models from natural language supervision (2021)
Ramesh, A., Dhariwal, P., Nichol, A., Chu, C., Chen, M.: Hierarchical text-conditional image generation with clip latents. arXiv preprint arXiv:2204.06125 (2022)
Ramesh, A., et al.: Zero-shot text-to-image generation (2021)
Ranzato, M., Szlam, A., Bruna, J., Mathieu, M., Collobert, R., Chopra, S.: Video (language) modeling: a baseline for generative models of natural videos. arXiv:abs/1412.6604 (2014). https://api.semanticscholar.org/CorpusID:17572062
Rombach, R., Blattmann, A., Lorenz, D., Esser, P., Ommer, B.: High-resolution image synthesis with latent diffusion models (2021)
Saharia, C., et al.: Photorealistic text-to-image diffusion models with deep language understanding (2022)
Salimans, T., Goodfellow, I., Zaremba, W., Cheung, V., Radford, A., Chen, X.: Improved techniques for training GANs. In: NeurIPS, vol. 29 (2016)
Salimans, T., Ho, J.: Progressive distillation for fast sampling of diffusion models (2022)
Sauer, A., Karras, T., Laine, S., Geiger, A., Aila, T.: StyleGAN-T: unlocking the power of GANs for fast large-scale text-to-image synthesis. vol. abs/2301.09515 (2023)
Shi, X., Chen, Z., Wang, H., Yeung, D.Y., Wong, W.K., WOO, W.C.: Convolutional LSTM network: a machine learning approach for precipitation nowcasting. In: Cortes, C., Lawrence, N., Lee, D., Sugiyama, M., Garnett, R. (eds.) NeurIPS. vol. 28. Curran Associates, Inc. (2015). https://proceedings.neurips.cc/paper_files/paper/2015/file/07563a3fe3bbe7e3ba84431ad9d055af-Paper.pdf
Singer, U., et al.: Make-a-video: text-to-video generation without text-video data. In: ICLR (2023). https://openreview.net/forum?id=nJfylDvgzlq
Sohl-Dickstein, J., Weiss, E., Maheswaranathan, N., Ganguli, S.: Deep unsupervised learning using nonequilibrium thermodynamics. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, Lille, France, vol. 37, pp. 2256–2265. PMLR (2015). https://proceedings.mlr.press/v37/sohl-dickstein15.html
Song, J., Meng, C., Ermon, S.: Denoising diffusion implicit models. arXiv:2010.02502 (2020). https://arxiv.org/abs/2010.02502
Soomro, K., Zamir, A.R., Shah, M.: UCF101: a dataset of 101 human action classes from videos in the wild. CRCV-TR-12-01 (2012)
Tang, Z., Yang, Z., Zhu, C., Zeng, M., Bansal, M.: Any-to-any generation via composable diffusion (2023)
Unterthiner, T., van Steenkiste, S., Kurach, K., Marinier, R., Michalski, M., Gelly, S.: FVD: a new metric for video generation (2019)
Villegas, R., et al.: Phenaki: variable length video generation from open domain textual descriptions. In: International Conference on Learning Representations (2023). https://openreview.net/forum?id=vOEXS39nOF
Voleti, V., Jolicoeur-Martineau, A., Pal, C.: MCVD - masked conditional video diffusion for prediction, generation, and interpolation. In: Oh, A.H., Agarwal, A., Belgrave, D., Cho, K. (eds.) NeurIPS (2022)
Vondrick, C., Pirsiavash, H., Torralba, A.: Generating videos with scene dynamics. In: Lee, D.D., Sugiyama, M., von Luxburg, U., Guyon, I., Garnett, R. (eds.) Advances in Neural Information Processing Systems 29: Annual Conference on Neural Information Processing Systems 2016, December 5-10, 2016, Barcelona, Spain, pp. 613–621 (2016). https://proceedings.neurips.cc/paper/2016/hash/04025959b191f8f9de3f924f0940515f-Abstract.html
Wang, J., Yuan, H., Chen, D., Zhang, Y., Wang, X., Zhang, S.: Modelscope text-to-video technical report. arXiv preprint arXiv:2308.06571 (2023)
Wang, X., et al.: Videocomposer: compositional video synthesis with motion controllability. arXiv preprint arXiv:2306.02018 (2023)
Wichers, N., Villegas, R., Erhan, D., Lee, H.: Hierarchical long-term video prediction without supervision. In: International Conference on Machine Learning (2018). https://api.semanticscholar.org/CorpusID:49193136
Wu, C., et al.: Godiva: generating open-domain videos from natural descriptions. arXiv:abs/2104.14806 (2021). https://api.semanticscholar.org/CorpusID:233476314
Wu, J.Z., et al.: Tune-a-video: one-shot tuning of image diffusion models for text-to-video generation. In: ICCV (2023)
Xing, Z., Dai, Q., Hu, H., Wu, Z., Jiang, Y.G.: SIMDA: simple diffusion adapter for efficient video generation (2023)
Yan, W., Zhang, Y., Abbeel, P., Srinivas, A.: VideoGPT: video generation using VQ-VAE and transformers (2021)
Yang, R., Srivastava, P., Mandt, S.: Diffusion probabilistic modeling for video generation. arXiv preprint arXiv:2203.09481 (2022)
Yin, S., et al.: DragNUWA: fine-grained control in video generation by integrating text, image, and trajectory. arXiv preprint arXiv:2308.08089 (2023)
Yin, S., et al.: NUWA-XL: diffusion over diffusion for extremely long video generation (2023)
Yu, J., et al.: Scaling autoregressive models for content-rich text-to-image generation. arXiv preprint arXiv:2206.10789 (2022)
Yu, L., et al.: MAGVIT: masked generative video transformer. In: CVPR (2023). https://arxiv.org/abs/2212.05199
Zhang, S., et al.: I2VGEN-XL: high-quality image-to-video synthesis via cascaded diffusion models. arXiv preprint arXiv:2311.04145 (2023)
Zhang, Y., Wei, Y., Jiang, D., Zhang, X., Zuo, W., Tian, Q.: ControlVideo: training-free controllable text-to-video generation (2023)
Zhou, D., Wang, W., Yan, H., Lv, W., Zhu, Y., Feng, J.: MagicVideo: efficient video generation with latent diffusion models (2023)
Acknowledgments
We are grateful for the support of multiple collaborators at Meta who helped us in this work. Baixue Zheng, Baishan Guo, Jeremy Teboul, Milan Zhou, Shenghao Lin, Kunal Pradhan, Jort Gemmeke, Jacob Xu, Dingkang Wang, Samyak Datta, Guan Pang, Symon Perriman, Vivek Pai, Shubho Sengupta for their help with the data and infra. We would like to thank Uriel Singer, Adam Polyak, Shelly Sheynin, Yaniv Taigman, Licheng Yu, Luxin Zhang, Yinan Zhao, David Yan, Emily Luo, Xiaoliang Dai, Zijian He, Peizhao Zhang, Peter Vajda, Roshan Sumbaly, Armen Aghajanyan, Michael Rabbat, and Michal Drozdzal for helpful discussions. We are also grateful to the help from Lauren Cohen, Mo Metanat, Lydia Baillergeau, Amanda Felix, Ana Paula Kirschner Mofarrej, Kelly Freed, Somya Jain. We thank Ahmad Al-Dahle and Manohar Paluri for their support.
Author information
Authors and Affiliations
Corresponding authors
Editor information
Editors and Affiliations
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
Copyright information
© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Girdhar, R. et al. (2025). Factorizing Text-to-Video Generation by Explicit Image Conditioning. In: Leonardis, A., Ricci, E., Roth, S., Russakovsky, O., Sattler, T., Varol, G. (eds) Computer Vision – ECCV 2024. ECCV 2024. Lecture Notes in Computer Science, vol 15120. Springer, Cham. https://doi.org/10.1007/978-3-031-73033-7_12
Download citation
DOI: https://doi.org/10.1007/978-3-031-73033-7_12
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-73032-0
Online ISBN: 978-3-031-73033-7
eBook Packages: Computer ScienceComputer Science (R0)