[go: up one dir, main page]

Skip to main content

Factorizing Text-to-Video Generation by Explicit Image Conditioning

  • Conference paper
  • First Online:
Computer Vision – ECCV 2024 (ECCV 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 15120))

Included in the following conference series:

  • 282 Accesses

Abstract

We present Emu Video, a text-to-video generation model that factorizes the generation into two steps: first generating an image conditioned on the text, and then generating a video conditioned on the text and the generated image. We identify critical design decisions–adjusted noise schedules for diffusion, and multi-stage training–that enable us to directly generate high quality and high resolution videos, without requiring a deep cascade of models as in prior work. In human evaluations, our generated videos are strongly preferred in quality compared to all prior work–\(81\%\) vs. Google’s Imagen Video, \(90\%\) vs. Nvidia’s PYOCO, and \(96\%\) vs. Meta’s Make-A-Video. Our model outperforms commercial solutions such as RunwayML’s Gen2 and Pika Labs. Finally, our factorizing approach naturally lends itself to animating images based on a user’s text prompt, where our generations are preferred \(96\%\) over prior work.

R. Girdhar, M. Singh, A. Brown, Q. Duval, S. Azadi and I. Misra—Equal technical contribution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Due to lack of access to training data of SDXL [57] and their underlying model, we leveraged their corresponding APIs for our comparison.

References

  1. Aghajanyan, A., et al.: Cm3: a causal masked multimodal model of the internet. arXiv:abs/2201.07520 (2022)

  2. Aldausari, N., Sowmya, A., Marcus, N., Mohammadi, G.: Video generative adversarial networks: a review. ACM Comput. Surv. 55(2) (2022). https://doi.org/10.1145/3487891, https://doi.org/10.1145/3487891

  3. An, J., et al.: Latent-shift: Latent diffusion with temporal shift for efficient text-to-video generation (2023)

    Google Scholar 

  4. Babaeizadeh, M., Finn, C., Erhan, D., Campbell, R.H., Levine, S.: Stochastic variational video prediction. In: ICLR (2018). https://openreview.net/forum?id=rk49Mg-CW

  5. Babaeizadeh, M., Saffar, M.T., Nair, S., Levine, S., Finn, C., Erhan, D.: FITVID: overfitting in pixel-level video prediction. arXiv preprint arXiv:2106.13195 (2020)

  6. Blattmann, A., et al.: Align your latents: high-resolution video synthesis with latent diffusion models. In: 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 22563–22575 (2023). https://api.semanticscholar.org/CorpusID:258187553

  7. Blattmann, A., et al.: Stable video diffusion: scaling latent video diffusion models to large datasets. arXiv preprint arXiv:2311.15127 (2023)

  8. Brock, A., Donahue, J., Simonyan, K.: Large scale GAN training for high fidelity natural image synthesis. In: International Conference on Learning Representations (2019). https://openreview.net/forum?id=B1xsqj09Fm

  9. Brooks, T., et al.: Generating long videos of dynamic scenes. In: NeurIPS (2022)

    Google Scholar 

  10. Brooks, T., Holynski, A., Efros, A.A.: Instructpix2pix: learning to follow image editing instructions. In: CVPR (2023)

    Google Scholar 

  11. Brown, T.B., et al.: Language models are few-shot learners. preprint arXiv:2005.14165 (2020)

  12. Chen, H., et al.: Videocrafter1: Open diffusion models for high-quality video generation. arXiv:2310.19512 (2023)

  13. Chen, T.: On the importance of noise scheduling for diffusion models. arXiv preprint arXiv:2301.10972 (2023)

  14. Chen, W., et al.: Control-a-video: controllable text-to-video generation with diffusion models. arXiv preprint arXiv:2305.13840 (2023)

  15. Chung, H.W., et al.: Scaling instruction-finetuned language models. arXiv preprint arXiv:2210.11416 (2022)

  16. Clark, A., Donahue, J., Simonyan, K.: Adversarial video generation on complex datasets (2019)

    Google Scholar 

  17. Dai, X., et al.: Emu: Enhancing image generation models using photogenic needles in a haystack. arXiv preprint arXiv:2309.15807 (2023)

  18. Denton, E., Fergus, R.: Stochastic video generation with a learned prior. In: Dy, J., Krause, A. (eds.) Proceedings of the 35th International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 80, pp. 1174–1183. PMLR (2018). https://proceedings.mlr.press/v80/denton18a.html

  19. Dhariwal, P., Nichol, A.: Diffusion models beat GANs on image synthesis (2021)

    Google Scholar 

  20. Ding, M., Zheng, W., Hong, W., Tang, J.: Cogview2: faster and better text-to-image generation via hierarchical transformers. In: NeurIPS (2022)

    Google Scholar 

  21. Donahue, J., Krahenbühl, P., Darrell, T.: Adversarial feature learning. In: ICLR (2016)

    Google Scholar 

  22. Esser, P., Chiu, J., Atighehchian, P., Granskog, J., Germanidis, A.: Structure and content-guided video synthesis with diffusion models (2023)

    Google Scholar 

  23. Esser, P., Rombach, R., Ommer, B.: Taming transformers for high-resolution image synthesis. In: CVPR (2021)

    Google Scholar 

  24. Fei, H., Wu, S., Ji, W., Zhang, H., Chua, T.S.: Empowering dynamics-aware text-to-video diffusion with large language models (2023)

    Google Scholar 

  25. Finn, C., Goodfellow, I., Levine, S.: Unsupervised learning for physical interaction through video prediction. In: Proceedings of the 30th International Conference on Neural Information Processing Systems. NIPS’16, Red Hook, NY, USA, pp. 64–72. Curran Associates Inc. (2016)

    Google Scholar 

  26. Fleiss, J.L., Cohen, J.: The equivalence of weighted kappa and the intraclass correlation coefficient as measures of reliability. Educ. Psychol. Measur. 33(3), 613–619 (1973)

    Article  Google Scholar 

  27. Fu, T.J., et al.: Tell me what happened: Unifying text-guided video completion via multimodal masked video generation. In: CVPR, pp. 10681–10692 (2023)

    Google Scholar 

  28. Gafni, O., Polyak, A., Ashual, O., Sheynin, S., Parikh, D., Taigman, Y.: Make-a-scene: scene-based text-to-image generation with human priors. arXiv preprint arXiv:2203.13131 (2022)

  29. Gafni, O., Polyak, A., Ashual, O., Sheynin, S., Parikh, D., Taigman, Y.: Make-a-scene: scene-based text-to-image generation with human priors. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds.) ECCV 2022. LNCS, vol. 13675, pp. 89–106. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-19784-0_6

    Chapter  Google Scholar 

  30. Ge, S., et al.: Preserve your own correlation: a noise prior for video diffusion models (2023)

    Google Scholar 

  31. Gu, J., et al.: Reuse and diffuse: iterative denoising for text-to-video generation (2023)

    Google Scholar 

  32. Gupta, A., Tian, S., Zhang, Y., Wu, J., Martín-Martín, R., Fei-Fei, L.: Maskvit: masked visual pre-training for video prediction. In: ICLR (2023). https://openreview.net/forum?id=QAV2CcLEDh

  33. Harvey, W., Naderiparizi, S., Masrani, V., Weilbach, C., Wood, F.: Flexible diffusion modeling of long videos. In: Koyejo, S., Mohamed, S., Agarwal, A., Belgrave, D., Cho, K., Oh, A. (eds.) NeurIPS, vol. 35, pp. 27953–27965. Curran Associates, Inc. (2022). https://proceedings.neurips.cc/paper_files/paper/2022/file/b2fe1ee8d936ac08dd26f2ff58986c8f-Paper-Conference.pdf

  34. He, Y., Yang, T., Zhang, Y., Shan, Y., Chen, Q.: Latent video diffusion models for high-fidelity long video generation (2023)

    Google Scholar 

  35. Ho, J., et al.: Imagen video: High definition video generation with diffusion models (2022)

    Google Scholar 

  36. Ho, J., Jain, A., Abbeel, P.: Denoising diffusion probabilistic models. arXiv preprint arxiv:2006.11239 (2020)

  37. Ho, J., Saharia, C., Chan, W., Fleet, D.J., Norouzi, M., Salimans, T.: Cascaded diffusion models for high fidelity image generation. arXiv preprint arXiv:2106.15282 (2021)

  38. Ho, J., Salimans, T.: Classifier-free diffusion guidance. arXiv preprint arXiv:2207.12598 (2022)

  39. Ho, J., Salimans, T., Gritsenko, A., Chan, W., Norouzi, M., Fleet, D.J.: Video diffusion models. In: Koyejo, S., Mohamed, S., Agarwal, A., Belgrave, D., Cho, K., Oh, A. (eds.) NeurIPS, vol. 35, pp. 8633–8646. Curran Associates, Inc. (2022). https://proceedings.neurips.cc/paper_files/paper/2022/file/39235c56aef13fb05a6adc95eb9d8d66-Paper-Conference.pdf

  40. Hong, S., Seo, J., Hong, S., Shin, H., Kim, S.: Large language models are frame-level directors for zero-shot text-to-video generation (2023)

    Google Scholar 

  41. Hong, W., Ding, M., Zheng, W., Liu, X., Tang, J.: Cogvideo: Large-scale pretraining for text-to-video generation via transformers (2022)

    Google Scholar 

  42. Kalchbrenner, N., et al.: Video pixel networks. In: Precup, D., Teh, Y.W. (eds.) Proceedings of the 34th International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 70, pp. 1771–1779. PMLR (2017). https://proceedings.mlr.press/v70/kalchbrenner17a.html

  43. Kang, M., et al.: Scaling up GANs for text-to-image synthesis. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2023)

    Google Scholar 

  44. Khachatryan, L., et al.: Text2video-zero: text-to-image diffusion models are zero-shot video generators. arXiv preprint arXiv:2303.13439 (2023)

  45. Kim, T., Ahn, S., Bengio, Y.: Variational Temporal Abstraction. Curran Associates Inc., Red Hook (2019)

    Google Scholar 

  46. Kumar, M., et al.: Videoflow: a conditional flow-based model for stochastic video generation. In: ICLR (2020). https://openreview.net/forum?id=rJgUfTEYvH

  47. Labs, P.: Pika labs. https://www.pika.art/

  48. Laptev, I., Lindeberg, T.: Space-time interest points. In: ICCV (2003)

    Google Scholar 

  49. Lee, S., Kong, C., Jeon, D., Kwak, N.: Aadiff: Audio-aligned video synthesis with text-to-image diffusion (2023)

    Google Scholar 

  50. Lian, L., Shi, B., Yala, A., Darrell, T., Li, B.: LLM-grounded video diffusion models. arXiv preprint arXiv:2309.17444 (2023)

  51. Lin, S., Liu, B., Li, J., Yang, X.: Common diffusion noise schedules and sample steps are flawed. arXiv preprint arXiv:2305.08891 (2023)

  52. Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. arXiv preprint arXiv:1711.05101 (2017)

  53. Mathieu, M., Couprie, C., LeCun, Y.: Deep multi-scale video prediction beyond mean square error (2016)

    Google Scholar 

  54. ML, R.: Gen2. https://research.runwayml.com/gen2

  55. Nichol, A., et al.: Glide: towards photorealistic image generation and editing with text-guided diffusion models. arXiv preprint arXiv:2112.10741 (2021)

  56. Nichol, A., et al.: Glide: towards photorealistic image generation and editing with text-guided diffusion models (2022)

    Google Scholar 

  57. Podell, D., et al.: SDXL: improving latent diffusion models for high-resolution image synthesis. arXiv preprint arXiv:2307.01952 (2023)

  58. Radford, A., et al.: Learning transferable visual models from natural language supervision (2021)

    Google Scholar 

  59. Ramesh, A., Dhariwal, P., Nichol, A., Chu, C., Chen, M.: Hierarchical text-conditional image generation with clip latents. arXiv preprint arXiv:2204.06125 (2022)

  60. Ramesh, A., et al.: Zero-shot text-to-image generation (2021)

    Google Scholar 

  61. Ranzato, M., Szlam, A., Bruna, J., Mathieu, M., Collobert, R., Chopra, S.: Video (language) modeling: a baseline for generative models of natural videos. arXiv:abs/1412.6604 (2014). https://api.semanticscholar.org/CorpusID:17572062

  62. Rombach, R., Blattmann, A., Lorenz, D., Esser, P., Ommer, B.: High-resolution image synthesis with latent diffusion models (2021)

    Google Scholar 

  63. Saharia, C., et al.: Photorealistic text-to-image diffusion models with deep language understanding (2022)

    Google Scholar 

  64. Salimans, T., Goodfellow, I., Zaremba, W., Cheung, V., Radford, A., Chen, X.: Improved techniques for training GANs. In: NeurIPS, vol. 29 (2016)

    Google Scholar 

  65. Salimans, T., Ho, J.: Progressive distillation for fast sampling of diffusion models (2022)

    Google Scholar 

  66. Sauer, A., Karras, T., Laine, S., Geiger, A., Aila, T.: StyleGAN-T: unlocking the power of GANs for fast large-scale text-to-image synthesis. vol. abs/2301.09515 (2023)

    Google Scholar 

  67. Shi, X., Chen, Z., Wang, H., Yeung, D.Y., Wong, W.K., WOO, W.C.: Convolutional LSTM network: a machine learning approach for precipitation nowcasting. In: Cortes, C., Lawrence, N., Lee, D., Sugiyama, M., Garnett, R. (eds.) NeurIPS. vol. 28. Curran Associates, Inc. (2015). https://proceedings.neurips.cc/paper_files/paper/2015/file/07563a3fe3bbe7e3ba84431ad9d055af-Paper.pdf

  68. Singer, U., et al.: Make-a-video: text-to-video generation without text-video data. In: ICLR (2023). https://openreview.net/forum?id=nJfylDvgzlq

  69. Sohl-Dickstein, J., Weiss, E., Maheswaranathan, N., Ganguli, S.: Deep unsupervised learning using nonequilibrium thermodynamics. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, Lille, France, vol. 37, pp. 2256–2265. PMLR (2015). https://proceedings.mlr.press/v37/sohl-dickstein15.html

  70. Song, J., Meng, C., Ermon, S.: Denoising diffusion implicit models. arXiv:2010.02502 (2020). https://arxiv.org/abs/2010.02502

  71. Soomro, K., Zamir, A.R., Shah, M.: UCF101: a dataset of 101 human action classes from videos in the wild. CRCV-TR-12-01 (2012)

    Google Scholar 

  72. Tang, Z., Yang, Z., Zhu, C., Zeng, M., Bansal, M.: Any-to-any generation via composable diffusion (2023)

    Google Scholar 

  73. Unterthiner, T., van Steenkiste, S., Kurach, K., Marinier, R., Michalski, M., Gelly, S.: FVD: a new metric for video generation (2019)

    Google Scholar 

  74. Villegas, R., et al.: Phenaki: variable length video generation from open domain textual descriptions. In: International Conference on Learning Representations (2023). https://openreview.net/forum?id=vOEXS39nOF

  75. Voleti, V., Jolicoeur-Martineau, A., Pal, C.: MCVD - masked conditional video diffusion for prediction, generation, and interpolation. In: Oh, A.H., Agarwal, A., Belgrave, D., Cho, K. (eds.) NeurIPS (2022)

    Google Scholar 

  76. Vondrick, C., Pirsiavash, H., Torralba, A.: Generating videos with scene dynamics. In: Lee, D.D., Sugiyama, M., von Luxburg, U., Guyon, I., Garnett, R. (eds.) Advances in Neural Information Processing Systems 29: Annual Conference on Neural Information Processing Systems 2016, December 5-10, 2016, Barcelona, Spain, pp. 613–621 (2016). https://proceedings.neurips.cc/paper/2016/hash/04025959b191f8f9de3f924f0940515f-Abstract.html

  77. Wang, J., Yuan, H., Chen, D., Zhang, Y., Wang, X., Zhang, S.: Modelscope text-to-video technical report. arXiv preprint arXiv:2308.06571 (2023)

  78. Wang, X., et al.: Videocomposer: compositional video synthesis with motion controllability. arXiv preprint arXiv:2306.02018 (2023)

  79. Wichers, N., Villegas, R., Erhan, D., Lee, H.: Hierarchical long-term video prediction without supervision. In: International Conference on Machine Learning (2018). https://api.semanticscholar.org/CorpusID:49193136

  80. Wu, C., et al.: Godiva: generating open-domain videos from natural descriptions. arXiv:abs/2104.14806 (2021). https://api.semanticscholar.org/CorpusID:233476314

  81. Wu, J.Z., et al.: Tune-a-video: one-shot tuning of image diffusion models for text-to-video generation. In: ICCV (2023)

    Google Scholar 

  82. Xing, Z., Dai, Q., Hu, H., Wu, Z., Jiang, Y.G.: SIMDA: simple diffusion adapter for efficient video generation (2023)

    Google Scholar 

  83. Yan, W., Zhang, Y., Abbeel, P., Srinivas, A.: VideoGPT: video generation using VQ-VAE and transformers (2021)

    Google Scholar 

  84. Yang, R., Srivastava, P., Mandt, S.: Diffusion probabilistic modeling for video generation. arXiv preprint arXiv:2203.09481 (2022)

  85. Yin, S., et al.: DragNUWA: fine-grained control in video generation by integrating text, image, and trajectory. arXiv preprint arXiv:2308.08089 (2023)

  86. Yin, S., et al.: NUWA-XL: diffusion over diffusion for extremely long video generation (2023)

    Google Scholar 

  87. Yu, J., et al.: Scaling autoregressive models for content-rich text-to-image generation. arXiv preprint arXiv:2206.10789 (2022)

  88. Yu, L., et al.: MAGVIT: masked generative video transformer. In: CVPR (2023). https://arxiv.org/abs/2212.05199

  89. Zhang, S., et al.: I2VGEN-XL: high-quality image-to-video synthesis via cascaded diffusion models. arXiv preprint arXiv:2311.04145 (2023)

  90. Zhang, Y., Wei, Y., Jiang, D., Zhang, X., Zuo, W., Tian, Q.: ControlVideo: training-free controllable text-to-video generation (2023)

    Google Scholar 

  91. Zhou, D., Wang, W., Yan, H., Lv, W., Zhu, Y., Feng, J.: MagicVideo: efficient video generation with latent diffusion models (2023)

    Google Scholar 

Download references

Acknowledgments

We are grateful for the support of multiple collaborators at Meta who helped us in this work. Baixue Zheng, Baishan Guo, Jeremy Teboul, Milan Zhou, Shenghao Lin, Kunal Pradhan, Jort Gemmeke, Jacob Xu, Dingkang Wang, Samyak Datta, Guan Pang, Symon Perriman, Vivek Pai, Shubho Sengupta for their help with the data and infra. We would like to thank Uriel Singer, Adam Polyak, Shelly Sheynin, Yaniv Taigman, Licheng Yu, Luxin Zhang, Yinan Zhao, David Yan, Emily Luo, Xiaoliang Dai, Zijian He, Peizhao Zhang, Peter Vajda, Roshan Sumbaly, Armen Aghajanyan, Michael Rabbat, and Michal Drozdzal for helpful discussions. We are also grateful to the help from Lauren Cohen, Mo Metanat, Lydia Baillergeau, Amanda Felix, Ana Paula Kirschner Mofarrej, Kelly Freed, Somya Jain. We thank Ahmad Al-Dahle and Manohar Paluri for their support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Rohit Girdhar or Mannat Singh .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 3220 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Girdhar, R. et al. (2025). Factorizing Text-to-Video Generation by Explicit Image Conditioning. In: Leonardis, A., Ricci, E., Roth, S., Russakovsky, O., Sattler, T., Varol, G. (eds) Computer Vision – ECCV 2024. ECCV 2024. Lecture Notes in Computer Science, vol 15120. Springer, Cham. https://doi.org/10.1007/978-3-031-73033-7_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-73033-7_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-73032-0

  • Online ISBN: 978-3-031-73033-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics