[go: up one dir, main page]

Skip to main content

PAV: Personalized Head Avatar from Unstructured Video Collection

  • Conference paper
  • First Online:
Computer Vision – ECCV 2024 (ECCV 2024)

Abstract

We propose PAV, Personalized Head Avatar for the synthesis of human faces under arbitrary viewpoints and facial expressions. PAV introduces a method that learns a dynamic deformable neural radiance field (NeRF), in particular from a collection of monocular talking face videos of the same character under various appearance and shape changes. Unlike existing head NeRF methods that are limited to modeling such input videos on a per-appearance basis, our method allows for learning multi-appearance NeRFs, introducing appearance embedding for each input video via learnable latent neural features attached to the underlying geometry. Furthermore, the proposed appearance-conditioned density formulation facilitates the shape variation of the character, such as facial hair and soft tissues, in the radiance field prediction. To the best of our knowledge, our approach is the first dynamic deformable NeRF framework to model appearance and shape variations in a single unified network for multi-appearances of the same subject. We demonstrate experimentally that PAV outperforms the baseline method in terms of visual rendering quality in our quantitative and qualitative studies on various subjects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Athar, S., Xu, Z., Sunkavalli, K., Shechtman, E., Shu, Z.: Rignerf: fully controllable neural 3d portraits. In: Proceedings of the IEEE/CVF conference on Computer Vision and Pattern Recognition, pp. 20364–20373 (2022)

    Google Scholar 

  2. Averbuch-Elor, H., Cohen-Or, D., Kopf, J., Cohen, M.F.: Bringing portraits to life. ACM Trans. Graph. 36(6), 1–13 (2017)

    Article  Google Scholar 

  3. Bai, Z., et al.: Learning personalized high quality volumetric head avatars from monocular RGB videos. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 16890–16900 (2023)

    Google Scholar 

  4. Bühler, M.C., Meka, A., Li, G., Beeler, T., Hilliges, O.: Varitex: variational neural face textures. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 13890–13899 (2021)

    Google Scholar 

  5. Chen, C., O’Toole, M., Bharaj, G., Garrido, P.: Implicit neural head synthesis via controllable local deformation fields. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 416–426 (2023)

    Google Scholar 

  6. Clark, J.H.: Hierarchical geometric models for visible surface algorithms. Commun. ACM 19(10), 547–554 (1976)

    Article  Google Scholar 

  7. Deng, J., Guo, J., Zhou, Y., Yu, J., Kotsia, I., Zafeiriou, S.: Retinaface: single-stage dense face localisation in the wild. arXiv preprint arXiv:1905.00641 (2019)

  8. Ding, K., Ma, K., Wang, S., Simoncelli, E.P.: Image Quality Assessment: Unifying Structure and Texture Similarity. In: TPAMI (2022)

    Google Scholar 

  9. Egger, B., et al.: 3D morphable face models-past, present, and future. ACM Trans. Graph. 39(5), 1–38 (2020)

    Google Scholar 

  10. Gafni, G., Thies, J., Zollhöfer, M., Nießner, M.: Dynamic neural radiance fields for monocular 4D facial avatar reconstruction. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 8649–8658 (2021)

    Google Scholar 

  11. Gao, X., Zhong, C., Xiang, J., Hong, Y., Guo, Y., Zhang, J.: Reconstructing personalized semantic facial nerf models from monocular video. ACM Trans. Graph. 41(6), 1–12 (2022)

    Article  Google Scholar 

  12. Garrido, P., Valgaerts, L., Rehmsen, O., Thormahlen, T., Perez, P., Theobalt, C.: Automatic face reenactment. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4217–4224 (2014)

    Google Scholar 

  13. Garrido, P., et al.: Vdub: modifying face video of actors for plausible visual alignment to a dubbed audio track. In: Computer Graphics Forum, vol. 34, pp. 193–204. Wiley Online Library (2015)

    Google Scholar 

  14. Grassal, P.W., Prinzler, M., Leistner, T., Rother, C., Nießner, M., Thies, J.: Neural head avatars from monocular RGB videos. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 18653–18664 (2022)

    Google Scholar 

  15. Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. Adv. Neural Inf. Process. Syst. 30 (2017)

    Google Scholar 

  16. Kim, H., et al.: Deep video portraits. ACM Trans. Graph. 37(4), 1–14 (2018)

    Google Scholar 

  17. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  18. Kuang, Z., Olszewski, K., Chai, M., Huang, Z., Achlioptas, P., Tulyakov, S.: Neroic: neural rendering of objects from online image collections. ACM Trans. Graph. 41(4), 1–12 (2022)

    Article  Google Scholar 

  19. Li, T., Bolkart, T., Black, M.J., Li, H., Romero, J.: Learning a model of facial shape and expression from 4D scans. ACM Trans. Graph. (Proc. SIGGRAPH Asia) 36(6), 194:1–194:17 (2017). https://doi.org/10.1145/3130800.3130813

  20. Liu, L., Habermann, M., Rudnev, V., Sarkar, K., Gu, J., Theobalt, C.: Neural actor: neural free-view synthesis of human actors with pose control. ACM Trans. Graph. 40(6), 1–16 (2021)

    Google Scholar 

  21. Mallya, A., Wang, T.C., Liu, M.Y.: Implicit warping for animation with image sets. Adv. Neural. Inf. Process. Syst. 35, 22438–22450 (2022)

    Google Scholar 

  22. Martin-Brualla, R., Radwan, N., Sajjadi, M.S., Barron, J.T., Dosovitskiy, A., Duckworth, D.: Nerf in the wild: neural radiance fields for unconstrained photo collections. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 7210–7219 (2021)

    Google Scholar 

  23. Mildenhall, B., Srinivasan, P.P., Tancik, M., Barron, J.T., Ramamoorthi, R., Ng, R.: Nerf: representing scenes as neural radiance fields for view synthesis. Commun. ACM 65(1), 99–106 (2021)

    Article  Google Scholar 

  24. Müller, T., Evans, A., Schied, C., Keller, A.: Instant neural graphics primitives with a multiresolution hash encoding. ACM Trans. Graph. 41(4), 1–15 (2022)

    Article  Google Scholar 

  25. Nirkin, Y., Keller, Y., Hassner, T.: Fsgan: subject agnostic face swapping and reenactment. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 7184–7193 (2019)

    Google Scholar 

  26. Park, K., et al.: Hypernerf: a higher-dimensional representation for topologically varying neural radiance fields. arXiv preprint arXiv:2106.13228 (2021)

  27. Peng, S., et al.: Animatable neural radiance fields for modeling dynamic human bodies. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 14314–14323 (2021)

    Google Scholar 

  28. Pumarola, A., Corona, E., Pons-Moll, G., Moreno-Noguer, F.: D-nerf: neural radiance fields for dynamic scenes. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10318–10327 (2021)

    Google Scholar 

  29. Siarohin, A., Lathuilière, S., Tulyakov, S., Ricci, E., Sebe, N.: First order motion model for image animation. Adv. Neural Inf. Process. Syst. 32 (2019)

    Google Scholar 

  30. Tancik, M., et al.: Block-nerf: scalable large scene neural view synthesis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8248–8258 (2022)

    Google Scholar 

  31. Tewari, A., et al.: State of the art on neural rendering. In: Computer Graphics Forum, vol. 39, pp. 701–727. Wiley Online Library (2020)

    Google Scholar 

  32. Tewari, A., et al.: Advances in neural rendering. In: Computer Graphics Forum, vol. 41, pp. 703–735. Wiley Online Library (2022)

    Google Scholar 

  33. Thies, J., Zollhöfer, M., Nießner, M.: Deferred neural rendering: image synthesis using neural textures. ACM Trans. Graph. 38(4), 1–12 (2019)

    Article  Google Scholar 

  34. Thies, J., Zollhofer, M., Stamminger, M., Theobalt, C., Nießner, M.: Face2face: real-time face capture and reenactment of RGB videos. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2387–2395 (2016)

    Google Scholar 

  35. Wang, T.C., Liu, M.Y., Zhu, J.Y., Tao, A., Kautz, J., Catanzaro, B.: High-resolution image synthesis and semantic manipulation with conditional GANs. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 8798–8807 (2018)

    Google Scholar 

  36. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. In: TIP (2004)

    Google Scholar 

  37. Weng, C.Y., Srinivasan, P.P., Curless, B., Kemelmacher-Shlizerman, I.: Personnerf: personalized reconstruction from photo collections. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 524–533 (2023)

    Google Scholar 

  38. Yang, B., et al.: NeuMesh: learning disentangled neural mesh-based implicit field for geometry and texture editing. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds.) ECCV 2022, Part XVI, pp. 597–614. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-19787-1_34

  39. Zakharov, E., Ivakhnenko, A., Shysheya, A., Lempitsky, V.: Fast bi-layer neural synthesis of one-shot realistic head avatars. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12357, pp. 524–540. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58610-2_31

    Chapter  Google Scholar 

  40. Zhang, B., et al.: Metaportrait: identity-preserving talking head generation with fast personalized adaptation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 22096–22105 (2023)

    Google Scholar 

  41. Zhang, R., Isola, P., Efros, A.A., Shechtman, E., Wang, O.: The unreasonable effectiveness of deep features as a perceptual metric. In: CVPR (2018)

    Google Scholar 

  42. Zheng, Y., Abrevaya, V.F., Bühler, M.C., Chen, X., Black, M.J., Hilliges, O.: Im avatar: implicit morphable head avatars from videos. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 13545–13555 (2022)

    Google Scholar 

  43. Zielonka, W., Bolkart, T., Thies, J.: Towards metrical reconstruction of human faces. In: European Conference on Computer Vision, pp. 250–269. Springer (2022)

    Google Scholar 

  44. Zielonka, W., Bolkart, T., Thies, J.: Instant volumetric head avatars. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4574–4584 (2023)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akin Caliskan .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (zip 41962 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Caliskan, A., Kicanaoglu, B., Kim, H. (2025). PAV: Personalized Head Avatar from Unstructured Video Collection. In: Leonardis, A., Ricci, E., Roth, S., Russakovsky, O., Sattler, T., Varol, G. (eds) Computer Vision – ECCV 2024. ECCV 2024. Lecture Notes in Computer Science, vol 15099. Springer, Cham. https://doi.org/10.1007/978-3-031-72940-9_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-72940-9_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-72939-3

  • Online ISBN: 978-3-031-72940-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics