Abstract
NeRF (Neural Radiance Fields) has demonstrated tremendous potential in novel view synthesis and 3D reconstruction, but its performance is sensitive to input image quality, which struggles to achieve high-fidelity rendering when provided with low-quality sparse input viewpoints. Previous methods for NeRF restoration are tailored for specific degradation type, ignoring the generality of restoration. To overcome this limitation, we propose a generic radiance fields restoration pipeline, named RaFE, which applies to various types of degradations, such as low resolution, blurriness, noise, compression artifacts, or their combinations. Our approach leverages the success of off-the-shelf 2D restoration methods to recover the multi-view images individually. Instead of reconstructing a blurred NeRF by averaging inconsistencies, we introduce a novel approach using Generative Adversarial Networks (GANs) for NeRF generation to better accommodate the geometric and appearance inconsistencies present in the multi-view images. Specifically, we adopt a two-level tri-plane architecture, where the coarse level remains fixed to represent the low-quality NeRF, and a fine-level residual tri-plane to be added to the coarse level is modeled as a distribution with GAN to capture potential variations in restoration. We validate RaFE on both synthetic and real cases for various restoration tasks, demonstrating superior performance in both quantitative and qualitative evaluations, surpassing other 3D restoration methods specific to single task. Please see our project website zkaiwu.github.io/RaFE.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
References
Bahat, Y., Michaeli, T.: Explorable super resolution. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2716–2725 (2020)
Bahat, Y., Zhang, Y., Sommerhoff, H., Kolb, A., Heide, F.: Neural volume super-resolution. arXiv preprint arXiv:2212.04666 (2022)
Barron, J.T., Mildenhall, B., Tancik, M., Hedman, P., Martin-Brualla, R., Srinivasan, P.P.: Mip-NeRF: a multiscale representation for anti-aliasing neural radiance fields (2021)
Barron, J.T., Mildenhall, B., Verbin, D., Srinivasan, P.P., Hedman, P.: Mip-NeRF 360: unbounded anti-aliased neural radiance fields. In: CVPR (2022)
Beyer, L., Zhai, X., Kolesnikov, A.: Big vision (2022). https://github.com/google-research/big_vision
Chan, E.R., et al.: Efficient geometry-aware 3D generative adversarial networks. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 16123–16133 (2022)
Chen, A., Xu, Z., Geiger, A., Yu, J., Su, H.: TensoRF: tensorial radiance fields. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds.) ECCV 2022. LNCS, vol. 13692, pp. 333–350. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-19824-3_20
Chen, W.T., Yifan, W., Kuo, S.Y., Wetzstein, G.: DehazeNeRF: multiple image haze removal and 3D shape reconstruction using neural radiance fields. arXiv preprint arXiv:2303.11364 (2023)
Chen, X., Deng, Y., Wang, B.: Mimic3D: thriving 3D-aware GANs via 3D-to-2D imitation. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV) (2023)
Chen, Z., et al.: Hierarchical integration diffusion model for realistic image deblurring. In: NeurIPS (2023)
Chen, Z., Zhang, Y., Gu, J., Kong, L., Yang, X., Yu, F.: Dual aggregation transformer for image super-resolution. In: ICCV (2023)
Fridovich-Keil, S., Meanti, G., Warburg, F.R., Recht, B., Kanazawa, A.: K-planes: explicit radiance fields in space, time, and appearance. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12479–12488 (2023)
Goodfellow, I., et al.: Generative adversarial nets. Adv. Neural Inf. Process. Syst. 27 (2014)
Han, Y., Yu, T., Yu, X., Wang, Y., Dai, Q.: Super-NeRF: view-consistent detail generation for NeRF super-resolution. arXiv preprint arXiv:2304.13518 (2023)
Karras, T., et al.: Alias-free generative adversarial networks. In: Proceedings of the NeurIPS (2021)
Karras, T., Laine, S., Aittala, M., Hellsten, J., Lehtinen, J., Aila, T.: Analyzing and improving the image quality of StyleGAN. In: Proceedings of the CVPR (2020)
Kawar, B., Elad, M., Ermon, S., Song, J.: Denoising diffusion restoration models. In: Advances in Neural Information Processing Systems (2022)
Kerbl, B., Kopanas, G., Leimkühler, T., Drettakis, G.: 3D gaussian splatting for real-time radiance field rendering. ACM Trans. Graph. 42(4) (2023). https://repo-sam.inria.fr/fungraph/3d-gaussian-splatting/
Lee, D., Lee, M., Shin, C., Lee, S.: DP-NeRF: deblurred neural radiance field with physical scene priors. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12386–12396 (2023)
Lee, D., Oh, J., Rim, J., Cho, S., Lee, K.M.: ExBluRF: efficient radiance fields for extreme motion blurred images. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 17639–17648 (2023)
Li, H., Zhang, Z., Jiang, T., Luo, P., Feng, H., Xu, Z.: Real-world deep local motion deblurring. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 37, pp. 1314–1322 (2023)
Li, J., Li, D., Xiong, C., Hoi, S.: BLIP: bootstrapping language-image pre-training for unified vision-language understanding and generation. In: ICML (2022)
Li, J., et al.: Spatially adaptive self-supervised learning for real-world image denoising. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 9914–9924 (2023)
Liang, J., Cao, J., Sun, G., Zhang, K., Van Gool, L., Timofte, R.: SwinIR: image restoration using swin transformer. arXiv preprint arXiv:2108.10257 (2021)
Lin, X., et al.: DiffBIR: towards blind image restoration with generative diffusion prior. arXiv preprint arXiv:2308.15070 (2023)
Liu, X., Xue, H., Luo, K., Tan, P., Yi, L.: GenN2N: generative NeRF2NeRF translation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5105–5114 (2024)
Ma, L., et al.: Deblur-NeRF: neural radiance fields from blurry images. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12861–12870 (2022)
Mildenhall, B., Barron, J.T., Chen, J., Sharlet, D., Ng, R., Carroll, R.: Burst denoising with kernel prediction networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2502–2510 (2018)
Mildenhall, B., Hedman, P., Martin-Brualla, R., Srinivasan, P.P., Barron, J.T.: NeRF in the dark: high dynamic range view synthesis from noisy raw images. In: CVPR (2022)
Mildenhall, B., et al.: Local light field fusion: Practical view synthesis with prescriptive sampling guidelines. ACM Trans. Graph. (TOG) (2019)
Mildenhall, B., Srinivasan, P.P., Tancik, M., Barron, J.T., Ramamoorthi, R., Ng, R.: NeRF: representing scenes as neural radiance fields for view synthesis. Commun. ACM 65(1), 99–106 (2021)
Müller, T., Evans, A., Schied, C., Keller, A.: Instant neural graphics primitives with a multiresolution hash encoding. ACM Trans. Graph. 41(4), 102:1–102:15 (2022). https://doi.org/10.1145/3528223.3530127
Pearl, N., Treibitz, T., Korman, S.: NAN: noise-aware NeRFs for burst-denoising. In: CVPR (2022)
Saharia, C., et al.: Palette: image-to-image diffusion models. In: ACM SIGGRAPH 2022 Conference Proceedings, pp. 1–10 (2022)
Saharia, C., et al.: Photorealistic text-to-image diffusion models with deep language understanding. Adv. Neural. Inf. Process. Syst. 35, 36479–36494 (2022)
Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)
Skorokhodov, I., Tulyakov, S., Wang, Y., Wonka, P.: EpiGRAF: rethinking training of 3D GANs. Adv. Neural. Inf. Process. Syst. 35, 24487–24501 (2022)
Sun, C., Sun, M., Chen, H.: Direct voxel grid optimization: super-fast convergence for radiance fields reconstruction. In: CVPR (2022)
Tian, K., Jiang, Y., Yuan, Z., Bingyue, P., Wang, L.: Visual autoregressive modeling: scalable image generation via next-scale prediction. arXiv preprint arXiv:2404.02905 (2024)
Wan, Z., et al.: CAD: photorealistic 3D generation via adversarial distillation. arXiv preprint arXiv:2312.06663 (2023)
Wan, Z., et al.: Learning neural duplex radiance fields for real-time view synthesis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 8307–8316 (2023)
Wan, Z., et al.: Bringing old photos back to life. In: proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2747–2757 (2020)
Wang, C., Wu, X., Guo, Y.C., Zhang, S.H., Tai, Y.W., Hu, S.M.: NeRF-SR: high quality neural radiance fields using supersampling. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 6445–6454 (2022)
Wang, P., Zhao, L., Ma, R., Liu, P.: BAD-NeRF: bundle adjusted deblur neural radiance fields. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4170–4179 (2023)
Wang, P., Zhao, L., Ma, R., Liu, P.: BAD-NeRF: bundle adjusted deblur neural radiance fields. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4170–4179 (2023)
Wang, Y., Yu, J., Zhang, J.: Zero-shot image restoration using denoising diffusion null-space model. In: The Eleventh International Conference on Learning Representations (2023)
Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004)
Yang, S., et al.: MANIQA: multi-dimension attention network for no-reference image quality assessment. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1191–1200 (2022)
Zhang, K., Liang, J., Van Gool, L., Timofte, R.: Designing a practical degradation model for deep blind image super-resolution. In: IEEE International Conference on Computer Vision, pp. 4791–4800 (2021)
Zhang, R., Isola, P., Efros, A.A., Shechtman, E., Wang, O.: The unreasonable effectiveness of deep features as a perceptual metric. In: CVPR (2018)
Zhang, W., Zhai, G., Wei, Y., Yang, X., Ma, K.: Blind image quality assessment via vision-language correspondence: A multitask learning perspective. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 14071–14081 (2023)
Zhang, W., Li, X., Chen, X., Qiao, Y., Wu, X.M., Dong, C.: SEAL: a framework for systematic evaluation of real-world super-resolution. arXiv preprint arXiv:2309.03020 (2023)
Zhou, K., et al.: NeRFlix: high-quality neural view synthesis by learning a degradation-driven inter-viewpoint mixer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12363–12374 (2023)
Zhou, Y., Li, Z., Guo, C.L., Bai, S., Cheng, M.M., Hou, Q.: SRFormer: permuted self-attention for single image super-resolution. arXiv preprint arXiv:2303.09735 (2023)
Acknowledgments
This work was supported in part by the Hong Kong Research Grants Council General Research Fund (17203023), in part by The Hong Kong Jockey Club Charities Trust under Grant 2022-0174, in part by the Startup Fund and the Seed Fund for Basic Research for New Staff from The University of Hong Kong, in part by the funding from UBTECH Robotics, in part by a GRF grant from the Research Grants Council (RGC) of the Hong Kong Special Administrative Region, China [Project No. CityU 11208123], and in part by the National Natural Science Foundation of China (62132001).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
Copyright information
© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Wu, Z., Wan, Z., Zhang, J., Liao, J., Xu, D. (2025). RaFE: Generative Radiance Fields Restoration. In: Leonardis, A., Ricci, E., Roth, S., Russakovsky, O., Sattler, T., Varol, G. (eds) Computer Vision – ECCV 2024. ECCV 2024. Lecture Notes in Computer Science, vol 15125. Springer, Cham. https://doi.org/10.1007/978-3-031-72855-6_10
Download citation
DOI: https://doi.org/10.1007/978-3-031-72855-6_10
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-72854-9
Online ISBN: 978-3-031-72855-6
eBook Packages: Computer ScienceComputer Science (R0)