[go: up one dir, main page]

Skip to main content

Laplacian Segmentation Networks Improve Epistemic Uncertainty Quantification

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2024 (MICCAI 2024)

Abstract

Image segmentation relies heavily on neural networks which are known to be overconfident, especially when making predictions on out-of-distribution (OOD) images. This is a common scenario in the medical domain due to variations in equipment, acquisition sites, or image corruptions. This work addresses the challenge of OOD detection by proposing Laplacian Segmentation Networks (LSN): methods which jointly model epistemic (model) and aleatoric (data) uncertainty for OOD detection. In doing so, we propose the first Laplace approximation of the weight posterior that scales to large neural networks with skip connections that have high-dimensional outputs. We demonstrate on three datasets that the LSN-modeled parameter distributions, in combination with suitable uncertainty measures, gives superior OOD detection.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://github.com/kilianzepf/laplacian_segmentation.

  2. 2.

    https://qubiq21.grand-challenge.org.

References

  1. Bakas, S., et al.: Advancing the cancer genome atlas glioma MRI collections with expert segmentation labels and radiomic features. Scientific data 4(1), 1–13 (2017)

    Article  Google Scholar 

  2. Bakas, S., et al.: Identifying the best machine learning algorithms for brain tumor segmentation, progression assessment, and overall survival prediction in the brats challenge. arXiv preprint arXiv:1811.02629 (2018)

  3. Baumgartner, C.F., et al.: PHiSeg: capturing uncertainty in medical image segmentation. In: Medical Image Computing and Computer Assisted Intervention (MICCAI), pp. 119–127 (2019)

    Google Scholar 

  4. Bishop, C.M.: Pattern Recognition and Machine Learning (Information Science and Statistics). Springer-Verlag, Berlin, Heidelberg (2006)

    Google Scholar 

  5. Botev, A.: The Gauss-Newton matrix for deep learning models and its applications. Ph.D. thesis, UCL (University College London) (2020)

    Google Scholar 

  6. Codella, N.C., et al.: Skin lesion analysis toward melanoma detection: a challenge at the 2017 international symposium on biomedical imaging (ISBI), hosted by the international skin imaging collaboration (ISIC). In: IEEE 15th International Symposium on Biomedical Imaging, pp. 168–172. IEEE (2018)

    Google Scholar 

  7. Combalia, M., et al.: BCN20000: Dermoscopic lesions in the wild. arXiv preprint arXiv:1908.02288 (2019)

  8. Daxberger, E., Kristiadi, A., Immer, A., Eschenhagen, R., Bauer, M., Hennig, P.: Laplace redux–effortless Bayesian deep learning. In: NeurIPS (2021)

    Google Scholar 

  9. Detlefsen, N.S., et al.: Stochman. GitHub (2021). https://github.com/MachineLearningLifeScience/stochman/

  10. Foresee, F.D., Hagan, M.T.: Gauss-Newton approximation to Bayesian learning. In: Proceedings of International Conference on Neural Networks (ICNN 1997), vol. 3, pp. 1930–1935. IEEE (1997)

    Google Scholar 

  11. Fuchs, M., Gonzalez, C., Mukhopadhyay, A.: Practical uncertainty quantification for brain tumor segmentation. In: Medical Imaging with Deep Learning (2021)

    Google Scholar 

  12. Gawlikowski, J., et al.: A survey of uncertainty in deep neural networks. arXiv preprint arXiv:2107.03342 (2021)

  13. Hendrycks, D., Gimpel, K.: A baseline for detecting misclassified and out-of-distribution examples in neural networks. arXiv preprint arXiv:1610.02136 (2016)

  14. Houlsby, N., Huszár, F., Ghahramani, Z., Lengyel, M.: Bayesian active learning for classification and preference learning (2011)

    Google Scholar 

  15. Kahl, K.C., Lüth, C.T., Zenk, M., Maier-Hein, K., Jaeger, P.F.: Values: a framework for systematic validation of uncertainty estimation in semantic segmentation. arXiv preprint arXiv:2401.08501 (2024)

  16. Kendall, A., Gal, Y.: What uncertainties do we need in Bayesian deep learning for computer vision? In: Advances in Neural Information Processing Systems, vol. 30 (2017)

    Google Scholar 

  17. Kiureghian, A.D., Ditlevsen, O.: Aleatory or epistemic? Does it matter? Struct. Saf. 31(2), 105–112 (2009)

    Article  Google Scholar 

  18. Kohl, S., et al.: A probabilistic U-Net for segmentation of ambiguous images. In: Advances in Neural Information Processing Systems, vol. 31 (2018)

    Google Scholar 

  19. Kohl, S.A.A., et al.: A hierarchical probabilistic U-Net for modeling multi-scale ambiguities. arXiv preprint arXiv:1905.13077 (2019)

  20. Lakshminarayanan, B., Pritzel, A., Blundell, C.: Simple and scalable predictive uncertainty estimation using deep ensembles. In: Advances in Neural Information Processing Systems, vol. 30 (2017)

    Google Scholar 

  21. Lee, S., Purushwalkam Shiva Prakash, S., Cogswell, M., Ranjan, V., Crandall, D., Batra, D.: Stochastic multiple choice learning for training diverse deep ensembles. In: Advances in Neural Information Processing Systems, vol. 29 (2016)

    Google Scholar 

  22. MacKay, D.J.: Bayesian interpolation. Neural Comput. 4(3), 415–447 (1992)

    Article  Google Scholar 

  23. Menze, B.H., et al.: The multimodal brain tumor image segmentation benchmark (brats). IEEE Trans. Med. Imaging 34(10), 1993–2024 (2014)

    Article  Google Scholar 

  24. Miani, M., Warburg, F., Moreno-Muñoz, P., Detlefsen, N.S., Hauberg, S.: Laplacian autoencoders for learning stochastic representations. In: Advances in Neural Information Processing Systems (2022)

    Google Scholar 

  25. Monteiro, M., et al.: Stochastic segmentation networks: modelling spatially correlated aleatoric uncertainty. Adv. Neural. Inf. Process. Syst. 33, 12756–12767 (2020)

    Google Scholar 

  26. Mucsányi, B., Kirchhof, M., Oh, S.J.: Benchmarking uncertainty disentanglement: specialized uncertainties for specialized tasks (2024)

    Google Scholar 

  27. Pacheco, A.G.C., Sastry, C.S., Trappenberg, T., Oore, S., Krohling, R.A.: On out-of-distribution detection algorithms with deep neural skin cancer classifiers. In: 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp. 3152–3161 (2020). https://doi.org/10.1109/CVPRW50498.2020.00374

  28. Pacheco, A.G.C.: PAD-UFES-20: a skin lesion dataset composed of patient data and clinical images collected from smartphones. Data Brief 32, 106221 (2020)

    Article  Google Scholar 

  29. Pedregosa, F., et al.: Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011)

    MathSciNet  Google Scholar 

  30. Popescu, S.G., Sharp, D.J., Cole, J.H., Kamnitsas, K., Glocker, B.: Distributional gaussian process layers for outlier detection in image segmentation. In: Feragen, A., Sommer, S., Schnabel, J., Nielsen, M. (eds.) IPMI 2021. LNCS, vol. 12729, pp. 415–427. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-78191-0_32

    Chapter  Google Scholar 

  31. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. CoRR abs/1505.04597 (2015). http://arxiv.org/abs/1505.04597

  32. Rupprecht, C., et al.: Learning in an uncertain world: representing ambiguity through multiple hypotheses. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3591–3600 (2017)

    Google Scholar 

  33. Schweighofer, K., Aichberger, L., Ielanskyi, M., Hochreiter, S.: Introducing an improved information-theoretic measure of predictive uncertainty (2023). https://openreview.net/forum?id=c71B6zW70d

  34. Schweighofer, K., Aichberger, L., Ielanskyi, M., Klambauer, G., Hochreiter, S.: Quantification of uncertainty with adversarial models. In: Thirty-seventh Conference on Neural Information Processing Systems (2023). https://openreview.net/forum?id=5eu00pcLWa

  35. Selvan, R., Faye, F., Middleton, J., Pai, A.: Uncertainty quantification in medical image segmentation with normalizing flows. In: Liu, M., Yan, P., Lian, C., Cao, X. (eds.) MLMI 2020. LNCS, vol. 12436, pp. 80–90. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59861-7_9

    Chapter  Google Scholar 

  36. Tschandl, P., Rosendahl, C., Kittler, H.: The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. Sci. Data 5(1), 1–9 (2018)

    Article  Google Scholar 

  37. Wimmer, L., Sale, Y., Hofman, P., Bischl, B., Hüllermeier, E.: Quantifying aleatoric and epistemic uncertainty in machine learning: Are conditional entropy and mutual information appropriate measures? In: Evans, R.J., Shpitser, I. (eds.) Proceedings of the Thirty-Ninth Conference on Uncertainty in Artificial Intelligence. Proceedings of Machine Learning Research, vol. 216, pp. 2282–2292. PMLR (2023). https://proceedings.mlr.press/v216/wimmer23a.html

Download references

Acknowledgments

This work was supported by VILLUM FONDEN (grants 15334, 42062), the European Research Council under the European Union’s Horizon 2020 research and innovation programme (grant 757360), Novo Nordisk Foundation (NNF20O-C0062606), LANL (LA-UR-24-23937) LDRD grant 20210043DR (U.S. DOE NNSA Contract 89233218CNA000001), and the Pioneer Centre for AI (DNRF grant P1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kilian Zepf .

Editor information

Editors and Affiliations

Ethics declarations

Disclosure of Interests

The authors have no competing interests to declare that are relevant to the content of this article.

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 315 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zepf, K. et al. (2024). Laplacian Segmentation Networks Improve Epistemic Uncertainty Quantification. In: Linguraru, M.G., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2024. MICCAI 2024. Lecture Notes in Computer Science, vol 15008. Springer, Cham. https://doi.org/10.1007/978-3-031-72111-3_33

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-72111-3_33

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-72110-6

  • Online ISBN: 978-3-031-72111-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics