Abstract
Image segmentation relies heavily on neural networks which are known to be overconfident, especially when making predictions on out-of-distribution (OOD) images. This is a common scenario in the medical domain due to variations in equipment, acquisition sites, or image corruptions. This work addresses the challenge of OOD detection by proposing Laplacian Segmentation Networks (LSN): methods which jointly model epistemic (model) and aleatoric (data) uncertainty for OOD detection. In doing so, we propose the first Laplace approximation of the weight posterior that scales to large neural networks with skip connections that have high-dimensional outputs. We demonstrate on three datasets that the LSN-modeled parameter distributions, in combination with suitable uncertainty measures, gives superior OOD detection.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Bakas, S., et al.: Advancing the cancer genome atlas glioma MRI collections with expert segmentation labels and radiomic features. Scientific data 4(1), 1–13 (2017)
Bakas, S., et al.: Identifying the best machine learning algorithms for brain tumor segmentation, progression assessment, and overall survival prediction in the brats challenge. arXiv preprint arXiv:1811.02629 (2018)
Baumgartner, C.F., et al.: PHiSeg: capturing uncertainty in medical image segmentation. In: Medical Image Computing and Computer Assisted Intervention (MICCAI), pp. 119–127 (2019)
Bishop, C.M.: Pattern Recognition and Machine Learning (Information Science and Statistics). Springer-Verlag, Berlin, Heidelberg (2006)
Botev, A.: The Gauss-Newton matrix for deep learning models and its applications. Ph.D. thesis, UCL (University College London) (2020)
Codella, N.C., et al.: Skin lesion analysis toward melanoma detection: a challenge at the 2017 international symposium on biomedical imaging (ISBI), hosted by the international skin imaging collaboration (ISIC). In: IEEE 15th International Symposium on Biomedical Imaging, pp. 168–172. IEEE (2018)
Combalia, M., et al.: BCN20000: Dermoscopic lesions in the wild. arXiv preprint arXiv:1908.02288 (2019)
Daxberger, E., Kristiadi, A., Immer, A., Eschenhagen, R., Bauer, M., Hennig, P.: Laplace redux–effortless Bayesian deep learning. In: NeurIPS (2021)
Detlefsen, N.S., et al.: Stochman. GitHub (2021). https://github.com/MachineLearningLifeScience/stochman/
Foresee, F.D., Hagan, M.T.: Gauss-Newton approximation to Bayesian learning. In: Proceedings of International Conference on Neural Networks (ICNN 1997), vol. 3, pp. 1930–1935. IEEE (1997)
Fuchs, M., Gonzalez, C., Mukhopadhyay, A.: Practical uncertainty quantification for brain tumor segmentation. In: Medical Imaging with Deep Learning (2021)
Gawlikowski, J., et al.: A survey of uncertainty in deep neural networks. arXiv preprint arXiv:2107.03342 (2021)
Hendrycks, D., Gimpel, K.: A baseline for detecting misclassified and out-of-distribution examples in neural networks. arXiv preprint arXiv:1610.02136 (2016)
Houlsby, N., Huszár, F., Ghahramani, Z., Lengyel, M.: Bayesian active learning for classification and preference learning (2011)
Kahl, K.C., Lüth, C.T., Zenk, M., Maier-Hein, K., Jaeger, P.F.: Values: a framework for systematic validation of uncertainty estimation in semantic segmentation. arXiv preprint arXiv:2401.08501 (2024)
Kendall, A., Gal, Y.: What uncertainties do we need in Bayesian deep learning for computer vision? In: Advances in Neural Information Processing Systems, vol. 30 (2017)
Kiureghian, A.D., Ditlevsen, O.: Aleatory or epistemic? Does it matter? Struct. Saf. 31(2), 105–112 (2009)
Kohl, S., et al.: A probabilistic U-Net for segmentation of ambiguous images. In: Advances in Neural Information Processing Systems, vol. 31 (2018)
Kohl, S.A.A., et al.: A hierarchical probabilistic U-Net for modeling multi-scale ambiguities. arXiv preprint arXiv:1905.13077 (2019)
Lakshminarayanan, B., Pritzel, A., Blundell, C.: Simple and scalable predictive uncertainty estimation using deep ensembles. In: Advances in Neural Information Processing Systems, vol. 30 (2017)
Lee, S., Purushwalkam Shiva Prakash, S., Cogswell, M., Ranjan, V., Crandall, D., Batra, D.: Stochastic multiple choice learning for training diverse deep ensembles. In: Advances in Neural Information Processing Systems, vol. 29 (2016)
MacKay, D.J.: Bayesian interpolation. Neural Comput. 4(3), 415–447 (1992)
Menze, B.H., et al.: The multimodal brain tumor image segmentation benchmark (brats). IEEE Trans. Med. Imaging 34(10), 1993–2024 (2014)
Miani, M., Warburg, F., Moreno-Muñoz, P., Detlefsen, N.S., Hauberg, S.: Laplacian autoencoders for learning stochastic representations. In: Advances in Neural Information Processing Systems (2022)
Monteiro, M., et al.: Stochastic segmentation networks: modelling spatially correlated aleatoric uncertainty. Adv. Neural. Inf. Process. Syst. 33, 12756–12767 (2020)
Mucsányi, B., Kirchhof, M., Oh, S.J.: Benchmarking uncertainty disentanglement: specialized uncertainties for specialized tasks (2024)
Pacheco, A.G.C., Sastry, C.S., Trappenberg, T., Oore, S., Krohling, R.A.: On out-of-distribution detection algorithms with deep neural skin cancer classifiers. In: 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp. 3152–3161 (2020). https://doi.org/10.1109/CVPRW50498.2020.00374
Pacheco, A.G.C.: PAD-UFES-20: a skin lesion dataset composed of patient data and clinical images collected from smartphones. Data Brief 32, 106221 (2020)
Pedregosa, F., et al.: Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011)
Popescu, S.G., Sharp, D.J., Cole, J.H., Kamnitsas, K., Glocker, B.: Distributional gaussian process layers for outlier detection in image segmentation. In: Feragen, A., Sommer, S., Schnabel, J., Nielsen, M. (eds.) IPMI 2021. LNCS, vol. 12729, pp. 415–427. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-78191-0_32
Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. CoRR abs/1505.04597 (2015). http://arxiv.org/abs/1505.04597
Rupprecht, C., et al.: Learning in an uncertain world: representing ambiguity through multiple hypotheses. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3591–3600 (2017)
Schweighofer, K., Aichberger, L., Ielanskyi, M., Hochreiter, S.: Introducing an improved information-theoretic measure of predictive uncertainty (2023). https://openreview.net/forum?id=c71B6zW70d
Schweighofer, K., Aichberger, L., Ielanskyi, M., Klambauer, G., Hochreiter, S.: Quantification of uncertainty with adversarial models. In: Thirty-seventh Conference on Neural Information Processing Systems (2023). https://openreview.net/forum?id=5eu00pcLWa
Selvan, R., Faye, F., Middleton, J., Pai, A.: Uncertainty quantification in medical image segmentation with normalizing flows. In: Liu, M., Yan, P., Lian, C., Cao, X. (eds.) MLMI 2020. LNCS, vol. 12436, pp. 80–90. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59861-7_9
Tschandl, P., Rosendahl, C., Kittler, H.: The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. Sci. Data 5(1), 1–9 (2018)
Wimmer, L., Sale, Y., Hofman, P., Bischl, B., Hüllermeier, E.: Quantifying aleatoric and epistemic uncertainty in machine learning: Are conditional entropy and mutual information appropriate measures? In: Evans, R.J., Shpitser, I. (eds.) Proceedings of the Thirty-Ninth Conference on Uncertainty in Artificial Intelligence. Proceedings of Machine Learning Research, vol. 216, pp. 2282–2292. PMLR (2023). https://proceedings.mlr.press/v216/wimmer23a.html
Acknowledgments
This work was supported by VILLUM FONDEN (grants 15334, 42062), the European Research Council under the European Union’s Horizon 2020 research and innovation programme (grant 757360), Novo Nordisk Foundation (NNF20O-C0062606), LANL (LA-UR-24-23937) LDRD grant 20210043DR (U.S. DOE NNSA Contract 89233218CNA000001), and the Pioneer Centre for AI (DNRF grant P1).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Ethics declarations
Disclosure of Interests
The authors have no competing interests to declare that are relevant to the content of this article.
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Zepf, K. et al. (2024). Laplacian Segmentation Networks Improve Epistemic Uncertainty Quantification. In: Linguraru, M.G., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2024. MICCAI 2024. Lecture Notes in Computer Science, vol 15008. Springer, Cham. https://doi.org/10.1007/978-3-031-72111-3_33
Download citation
DOI: https://doi.org/10.1007/978-3-031-72111-3_33
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-72110-6
Online ISBN: 978-3-031-72111-3
eBook Packages: Computer ScienceComputer Science (R0)